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ion distribution coming into that sheathrmust have its low energy
ions écut off“.to produce a self-consistiﬁt collisionless sheath,

and that each of these emitter sheath phenomena reduce the

normalized ( by plasma density ) net ion loss rate to the

Each of these phenomena also reise’ the normalized plasma
density adjacent to the emitter. The higher plasma density at
the eritter causes a greater increase in the loss of hot plasma
electron energy to the emitter than the corresponding decrease in
the loss of ionization energy ( carried by the ions ) to the
- 3
emitter.

Therefore these emitter sheath phenomena increase arc-

drop. Within the limitaetions of the current thermionic convertor

-

formulation, all threé) of these phenomena ( which become

significant at low currents ) steepen the current-voltage
characteristic.™ At low current densities, the present theory
shows that the collector sheath height decreases, resulting in a
larger electron diffusion velocity than can be justified for the
continuum model used in the plasma region. The result of lower
performance at lower current is in agreement with experimental
studies, but the limitation imposed by the formulation preveat
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SUMMARY OF WORK

This document contains a complete reproduction of the Ph.D.
dissertation of G. L. Main. The following paragraphs outline (
chapter by chapter ) the results of the research carried out

under this contract.

Chapter 1 develops the basic principles of the thermionic
convertor and its formulation. Since the formulation uses many
approximations out of computational necessity, we present an
overview of these approximations and the reasoning behind them.
The fluid mechanical nature of the formulation yields some
fundamental insight into how the sheath affects the convertor's

performance, and gives some quantitative results on performance.

Chapter 2 carries out the formulation of the convertor for the
general case and then for the isothermal electron case. These
results are entirely conventional. We center on the isothermal
electron case for its simplicity in explaining emitter sheath

effects.

Chapter 3 on sheaths advances collisionless sheath theory to




iii
cover the sheath phenomena under consideration. Previous sheath
o formulations have contained several mathematical simplifications
which are incompatible with the study of these sheath phenomena.
The simplifications are 1) monoenergetic ions from the plasma, 2)
'. monoenergetic emitted electrons, and 3) that the sheath potential
drop is large. Further, for these corrections, it is shown that
the "Bohm" criterion for matching the sheath to the plasma must

be generalized.

Chapter &4 presents isothermal results for the thermionic
convertor including the effects of surface emission, trapped ions
and reflected ions. The general result found here is that,
contrary to intuition, a higher plasma density at the emitter
increases arc-drop. All three emitter sheath phenomena produce a
lower net ion loss rate and yield higher plasma density at the

emitter.

Chapter 5 presents the results of non-isothermal calculations
using an implicit numerical algorithm to confirm the isothermal
results with ion reflection. However, detailed non-isothermal
calculations with trapped ions surface emission ions are not
carried out because the combination of the non-isothermal
algorithm and the full collisionless sheath algorithm would

require large amounts of CPU time.

Chapter 6 presents the conclusions of this work.
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CHAPTER 1: INTRODUCTION

1.1 The Cesium Diode Convertor
1.2 Formulation for the Convertor

1.3 Emitter Sheath Effects

The thermionic energy convertor is perhaps the simplest and
most direct heat engine in existence. It converts heat directly
into electrical power by thermionic emission. The device
essentially consists of two electrodes separated by a gzp (
typicaily .25 mm ) containing cesium vapor at a low pressure (
typically 1 torr ). One of the two plates ( the emitter ) is
heated by an external source to 1500 - 1750 K and the other ( the
collector ) is kept at 750 - 800 K by an external sink. The
hotter of the two plates emits electrons thermionically with a
greater average velocity and a far greater density than the
cooler plate. Because of the difference in emitted density and
velocity, & potential rise develops from the emitter to the
collector. Consequently, electrical power is generated directly.

The convertor could operate with a vacuum gap; however a vecuun




~2- CHAPTER 1
gap is impractical because an extremely small gap ( on the order
of 1 micron or less ) would be required to prevent the build up
of a space charge of electrons which limits current density. °?
Cesium is introduced into the gap to overcome the space charge
effects because cesium ionizes easily ( a first ionization energy
cf 3.89 eV ). The cesium diode convertor, in its ignited mode, 2

maintains a plasma electron temperature of approximately 3000 K

vhich supports the ionization of the cesium.

Emitter sheath phenomena are important in thermionic energy
convertors because the emitter sheath forms the boundzry
conditions for the plasha in the gap and controls both the :ion
loss rate and the loss rate of hot ( 3000 K ) plasma electrons to
the emitter. This thesis examines three expected emitter shez:th
phenomena and their effects on convertor performance: )
reflection of ions coming from the plasma, 2) ions trapped in the
double emitter sheath, and 3) surface emission ions. Inclusion
of <these tRhree phenomena combtined with the elimination of
previous sheath approximations requires careful analysis and

czlculation of the sheath structure. It is shown that the "bohm"

crcawecnsscevenemrc -

! At 1 micron approximately 5 amps/cm2 could pass through the
convertor under typical ccnditions.

? By ignited mode, we mean a plasma arc in which the elect-or
temperature is greater than the temperatures of the electrocdes
bounding the plasma.

? The collector shezth does not have similar effects of any
significance Dbecause its low temperature makes it essenticlly
non-emitting.

e
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matching condition must be generalized to insure that self-
consistancy prevails throughout the entire sheath and not just at
the plasma-sheath interface. Further, it is shown that plasma
ion distribution coming into that sheath must have its low energy
ions "cut off" to produce & self-consistant collisionless shezth,
eand that each of these emitter sheath phenomena reduce the
normalized ( by plasma density ) net ion loss rate to the

emitter.

Each of these phenomena also raise the normalized plasma
density adjacent to the emitter. The higher plasma density at
the emitter causes a greater increase in the loss of hot plasma
electron energy to the emitter than the corresponding decreese in
the loss of ionization energy ( carried by the ions ) to the
emitter. Therefore these emitter sheath phenorena increase arc-
drep. Within the limitations of the current thermionic converter
formulation, all three of these phenomena ( which beccme
significant at low currents ) steepen the current-veoltage
characteristic. At low current densities, the present thecry
shows that the collector sheath height decreases, resulting in a
larger electron diffusion velocity than can be justified for the
continuum model used in the plasms region. * The result of lower
performance at lower current is in agreement with experimzntal

studies, but the limitetion imposed by the formulation prevent

theoretical examination of the lower current region in which a

&4

The limitations of the present formulation result from the
asymptotic division of the plasma into & neutral plasma and &
collisionless sheath.
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plateau of improved performance is found.

The remainder of this chapter develops the basic principles of
the thermionic convertor and its formulasion. Since the
formulation wuses many approximations out of computational
necessity, we present an overview of these approximations and the
reasoning behind them. The f£luid mechanical nature of the
formulation yields some fundamental insight into how the sheath
affects the convertor's performance, and gives some quantitative

results on performance.

n

Chapter 2 carries out the formulation of the convertor for the
general case and then for the isothermal electron case. These
results are entirely conventicnal. We center on the isothermel
electron case for its simplicity in explaining emitter sheath

effects.

Chapter 3 on sheaths advances collisionless sheath thecry to
cover the sheath phenomena under consideration. Previous sheath
formulations have contained several mathematical simplifications
which are incompzatible with the study of these sheath phenomere.
The simplifications are 1) monoenergetic ions from the plasmz, 2)
monoenergetic emitted electrons, and 3) that the sheath potential
drop is lerge. Further, Zfor these ccrrections, it is shown that
the "Bechm" criterion for metching the sheath to the plasmz sust

be generalized.

Chapter &4 presents isothermal results for the thermicnic

convertor including the effects of surface emission, trapped ions
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and reflected ions. The general result found here is that,
contrary to intuition, a higher plasma density at the emitter
increases arg-drop. All three emitter sheath phenomena produce a

lower net ion loss rate and yield hjgher plasma density &t the

emitter.

Chapter 5 presents the results of non-isothermal calculazions
using an implicit numerical algorithm to confirm the isothermal
results with ion reflection. However, detailed non-isothermal
calculations with trapped ions surface emission ions are not
carried out because the combination of the non-isothermal
glgorithm and the full c¢ollisionless sheath algorithm wouid

require large amounts of CPU time.

Chepter & presents the conclusions of this thesis.

1.1 The Cesium Diode Convertor

Tiguere 1.1.1 is a schematic diagram of the cesium dicde
convertor. The emitter is heated externally to temperature TE
which is typically 1750 K and the collector is cooled to

temperature T. which is typically 750 K. The gap space, d, or

C
convertor length, which is tvpicelly .25 mm, seperetes the
eritter from the ccllector. The cesium reservoir, which is
sometimes imbecded in the collector, is kept at temperature, T
tc maintain the desired cesium pressure ( typically 1 torr )} in

the gap. The electrical load is connected across the emitter and

ccilector to produce power. Figure 1.1.,2 is an experimental

X g e e
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Load

7

Emitter -{Col lector
T 21750% T.2 750%

P A AAA
Cesium
ervior

Ta
77

Figure 1.1.1 The Cesium Diode Convertor

WA
NN

result showing actual thermionic convertor performance under

these conditions. °* It should be noted that at reasonable output
- 2 ,

current densities ( 10 amp/cm™ ), the output voltage is on the

rder of 0.5 wvelts. A bzsic understanding of the thermicnic

convertor output 1is géined by developing the ideal therzicnic

convertor ( nc space charge effects ) in fig. 1.1.3, In the

* The experimental device shown here is swept through veltage
from -0.4 to 0.8 volts by an external sine wave generator at 60
Hz. What is shown as output voltage is the applied voltage. The
convertor is producing power when the output vcltage is greater
than zero.

-
-
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Figure 1.1.2 Actual Thermionic Convertor Performance

from Thermo-Electron Progress Report No. 48

ideal case, potential varies linearly across the gap becsuse the
. ; . . 2 2
Poissor eguation in the absence of space charge is d"¢/dx" = 0.
Case a is current saturation in which all electrons escaping the
emitter ( the emitter work function is ¢E ) arrive at zthe
coliector ( the collector work function is ¢C ). The quentizy

Vout is the output voltege.

In case b the potential is flat and

T YV TV~ - -
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Jsat
kS
N

T e S G— C—— — —— — a— S—

,;'S-
o

V,

out

Figure 1.1.3 The Ideal Convertor

the current is still at saturation. In case ¢ the convertor is
operating in the Boltzmann region. This region is so nemed
because the net current density drops off exponentially with
increasing output volcage. In the Boltzrmann region the mnet

current density as & function of output voltege is:

G~ A -Vt
T =Jee™ Fle Vp2@-Bc (2

while in the saturation region:

()

I: J—g , V‘ytf¢;"dc

. . v
L e A e Mha a aaa ¢

2
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where Jk is the Richardson emitted current,

-dz/
2
o= AT,'e e )

and where
2.

A=120 °"PVem®* k “
I1f, for instance, TE = 1500 K and ¢E = 2.12 eV then JR = 20

2 .
amp/cm” . We have assumed the collector emits no electrons, and

therefore a lower collector work function always improves
performance. This assumption is very good under the usual

conditisns in the thermionic convertor ( ¢C = 1.6 eV, TC = 750 K

. . 5 .. .
) because the collector emitted current is 107 times smaller then

the emitter's emitted current.

The experimental results clearly show the Boltzmann region,
except 1) the curve is steeper than exponential, 2) there is
sometimes a plateau at the base of the Boltzmann region, and 3)
the output voltage is lower than ideal because of plasma lcsses
known as arc-drop. Previous work ® has shown that part of the
steepness can be explained by the ionization kinetics of the
plasma. 1In this work we show that part cf the steepness czn be
explained by the sheath effects. All three of the emitter shkeath
phenomena considered here increese arc-drop and decrease output

voltage. Since all three phenomena become more significant &t

¢ Lawless, J.L., The Plezsma Dvnamics and lonization Kinhetics of
The..ionic Energy Conversion, Ph.D. Thesis, Princeton Univers:ity,
1581,

B

e e e Tt T T T T T
e e e e e e - e e
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low current densities, a steeper curve results. We had also
wished to explain the plateau region theoretically because of its
locally lower arc-drop. It is believed that the plateau, which
sometimes occurs at low current density, results from the
collapse of the plasma arc and is the result of surface emission
as the source of ions for the plasma. Unfortunately, our
theoretical calculations cannot be carried into this region
because the formulation ( the asymptotic division of the plasmea
into a collisionless sheath and a neutral continuum plasma region

) breaks down.

1.2 Formulation for the Convertor

Best performance from the thermionic convertor is obtained
experimentally when the following empirical relationship is

satisfied:

pcsd = 10 mil-torr, (1)

where P is the neutral cesium pressure and d is the gap. This
corresponds to about 15 ion mean free paths in the gap. Also,
under this condition, the convertor operates in an ignited mode
with the plasma electrons at approximetely 3000 K ( the energy
necessary to maintain the plasma electrons at a higher
temperature than the emitter temperature is supplied by the arc-
drop ). At this electron temperature ( or lower temperature when
the convertor is not ignited such as in the plateau ). the

ionizetion is about 10%. This can be seen from the Saha ecuetion
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for equilibrium plasma density,

2 Y _— Vo.
LI 2.4x|o'51; /le i hery (2)

’ n

where

neutral density (1/cm3),

n =
n
- , 3
n, = ion density (1l/cm™),
Vfi = first ionization energy, and
Te = plasma electron temperature.

Under the conditions, P = 1 torr, Te = 3000 K and Vfi = 3.89

eV, we have

n = 6.44 X 1015 (1/cm3), and

n, = 8.63 X 10 (1/em).

Since the convertor is only 15 mean free paths long, the plasma
does not attain its equilibrium plasma density and recombinazion
is usuelly nezligible. Therefore the ions are generated by the
high electron temperature in the gap and are lost to the emitter
and collector by diffusion. Surface emission of ions is
generally not a factor in supporting the plasma as can be seen

from the Sahz-Langmuir equation,

- /
T, = B% [kl (3)
es? Var Vs 74z e %t

- oy
Ze "%
where
JCS+ = surface emission ion current,
n. = neutral cesium number density, and
M = cesium atom mass.
cs

Under the previously used conditions,

J =1.6 X 1()-5 amps/cmz.

A
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In the convertor, Debye length,

Y
’aD - ‘”'7'L’%‘ﬁll

(4)

which is Jlength scale for charge seperation in the plasma and
therefore the sheath length scaling, is small compared to bcth

the eleciron and i1on mean free paths,
A, << A, A, << d. ()

Therefore, we divide the convertor into a neutral plasma region
terminated by collisionless sheaths at the electrodes. Figure
1.2.1 is potential distributicn in the convertor ( deiinitions of
terms are detailed in chap. 2 ). Based on the asymptotic
matching of <the neutrzl piasma regicn to the collisicnless
sheaths, the sheath results produce boundary conditions for the
neutral plasma. The plasma region is treated as fluid ( with a
source term for ionization ) with conservation of mass, momentum,
and energy. Conservation of mass requires & boundary condizion
for the ion loss rate which is found from the sheath net ion flux
rate. Conservation of momentum results in & net change in
potential through the plasma region which is added to the change
through the sheaths. And conservation of energy ( which is
dominated by electron energy ) requires boundary conditions or
plasma electron temperature. Examination of fig. 1.2.1 shows
that ions leaving the plasma for the emitter ( at 0+ ) cea be
reflected by the back of the sheath if Axs is greater than zero.
Ions entering the sheath are accelerated by the front sheath and

decelerated by the back sheath. Those ions entering the she:zt
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Figure 1.2.1 Potential in the Convertor
L
with energies 1less than Axs reflected back through the sheath
into the plasma region again. Figure 1.2.2 is plasma density in
¢ the convertor gap normalized by net current, J, and electron
speed of scund, c, for different ion reflection conditions at the
eritter. The higher curves are of little or no ion reflection
( and the lower curves result from ion reflection.
( 1.3 Emitter Sheath Effects
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Figure 1.2.2 Typical Plasma Density in the Convertor

0.60 0.80

1.00

Emitter sheath effects on thermionic convertor performance can

be divided into two categories:

1) changes in net ion flux rate

and 2)

the sheath which affect plasma density directly,

distribution

wvhich affect

tne

into
changes in shezth potentieal
excnange of "hot"

directly. A decreased influx

occurs for all three emitter
plasma density at the neutral

Theoretical intuition suggests

plasma electrons for

"coid" emitter icns

of ions into the sheath, which

sheath phenomena, increases the
plasma- emitter sheath interface.

that an increased plasme density

at the emitter would benefit performance by reducing resistzrce
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through the plasma and therefore reducing arc-drop. However,
this is not the case. While the plasma density at the emitter
increases slightly, plasma density at the collector decreases.

Consequently total resistance increases.
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CHAPTER 2: THERMIONIC CONVERTOR FORMULATION

2.1 General Formulation

2.2 Isothermal Formulation

In this chapter we develop the formulation for the quasi-
neutral plasma region of the thermionic convertor and the
boundary conditions for it. The boundary conditions contain
fluxes of electrons and ions that must be determined from the
sheaths and therefore the sheath is critical to the formulation.
Sheaths are considered in detail in the next chapter. The first
section is the general formulation for the non-isothermal plasma
electron case ( finite electron thermal conductivity ), and the
second section is specialized to the isothermal case. The
general formulation follows closely the notation of Lawless ! and
the isothermal formulation follows closely the notation of Lam.
? However, the isothermal fnormulation has been generalized to

! Lawless, J.L., The Plasma Dynamics and lIonization Kinetics of
Thermionic Energy Conversion, Ph.D. Thesis, Princeton University,
1981, chap. 2.
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eliminate the assumption of high sheaths which has previously
been used to simplify the electron dynamics. Lawless developed
an explicit  unsteady numerical scheme for the general non-
isothermal case. However, the explicit scheme is slow because
stability requires small time steps. In appendix C we develop an
implicit numerical scheme which eliminates the stability
constraint and speeds up the Lawless scheme by the number of
space grids squared. &Zven the implicit scheme is slow and it is
also difficult to gain physical insight from direct numerical
results. Therefore we develop the isothermal formulation which
is faster and easier to analyse. Most of the results in this
thesis are based on the isothermal formulation. Appendix B

contains the isothermal programs.

2.1 General Formulation

In this section, which follows the notation of Lawless (
chap.2 ), we develop the general non-isothermal formulation for
the quasi-neutral region of the thermionic convertor. We assume
that the convertor is one-dimensional since convertors typically
have a gap of .25 mm while the plates are 10 cm in diameter.
Following Lawless, we present the conservation equations, then
reduce them to convenient and useful forms. We next present and
discuss the approximations to be used, and resulting parabolic

P.D.E.s ( first order in time and second order in space ) which

-------- cCescocccecnssne

? Lam, S.H., Preliminary Report on Plasma Arc-Drop in Thermionic
in Thermionic Energy Converters. Princeton Unversity, 1976.
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-3 CHAPTER 2
are used to carry out the numerical calculations. Finally, we
discuss the boundary conditions for these equations whose flux

rates ( electrons and ions ) are derived from the sheaths.

The conservation equations we develop are: mass of ions and
electrons, momentum of ions and electrons, and energy of

electrons.

Conservation of mass of ions and electrons is:

_9_:7_¢___jc.)__££; Zﬁ"; 5‘"’-,9__’7' )
It ax ) ¢ X

where

I' =nu = electron flux,
e ee
Ti =nu, = ion flux,
u, = mean electron velocity,

u, = mean ion velocity,
n_ = electron number density,

n, = ion number density,

S(n) = net rate of ionization.

Conservation of momentum for ions and electrons is:

. Dele = -ék} - J P »
o A S TR T

[.Eifg = - 2 ‘ ) <) cp)
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where
m = electron mass,
M = ion mass,
Pe = electron pressure,
Py = jon pressure,
q = electron charge,
¥ = potential,

(p)

ca = exchange of momemtum from neutrals to

electrons,

Sei(p) = exchange of momemtum from ions to
electrons,

ia(p) = exchange of momemtum from neatrals to
ion.

Note: in this thesis, potentials, ¢,%,X, are defined such that
increasing potential repels electrons. This is in contrast to
the usual convention and is done so because electrons are of

principal interest.

Conservation of electron energy is:

)

2 ge - (£)
922(”‘5)"9,( (/",A]+7£ ,fe’%(ﬁ} DY 3)

where

........

R

|

r
1

L d IR



-5~ CHAPTER 2

muez/z + 3kTe/2 = stagnation energy,

=
n

e + pe/ne = stagnation enthalpy,

collisional and ionization energy source

q, = electron heat conduction flux.

Other useful conservation equations can be derived from
eqs.1,2 and 3. Also, from this point forward we invoke the
quasi-neutral approximation, n = n, =n;. From conservation of

mass ( eq.l ) we have

J

X

D

|

=0 )

QU

where

Js= q(I‘e - T,) = net current density.

i)
Equation 4 results from subraction of eqs.l and using the quasi-

neutral approximation to equate the time derivatives of density.

From conservation of momentum for ions and electrons, we have

mnz%t‘i‘ + Mﬂ%‘" = —_’_95+ .5;:P+ 5;:’) (s)

where
P =P, + Py = total plasms pressure.
We have added the two momentum equations and consequently have

eliminated the terms, sei(p) and nd(q¥)/¥x, which represent
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exchange of momentum between electrons and ions and the momentum
exchanged with the field. From electron energy conservation, we

derive

g%[n(é*'zf‘)]‘f';%[/;(b*zﬁ*[e = ”7‘% (;(/) +5(£)
. . (£+Z +)5 ) (6)

by differentiation of a product. Finally, the electric potential
term can be eliminated from the energy equation by subtracting

the electron momentum equation multiplied by U,

J J b~
= (ng) + L e _ ) n
7t ;x(re'g)"ige'fﬂyi = 3{5 + £ 5” o

* MC%‘ - ae/je(:l*ﬁ;m).

These three conservation equations, which are just the first
three moments of the Boltzmann equation, cannot be solved without
constitutive equations for pressure, heat flux and the
collisional terms. In order to produce the necessary
constitutive relations, we a&assume that the electron and ion
distributions in the plasma are near-Maxwellian and therefore we

can approximate ( ideal gas laws ),

PQ: nkTe
P‘. :nk-r; (8)

Legt'

-
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Te = plasma electron temperature,
Ti = '1‘n = jon and neutral temperature,

k = Boltzmann's constant.

Also, because of the near-Maxwellian assumption, we can make the

first order approximation,

?Te
i?e = '-‘kE.E;:?. (9)

where
ke = electron thermal conductivity.

The previous two models ( electron heat flux and electron
pressure ) are not totally consistant since eq.8 assumes an
isotropic Maxwellian electron distribution while the existence of

an electron heat flux requires a non-isotropic distribution.

For the collision terms, we assume momentum transfer is

proportional to the difference of mean species velocity,
)

~Sea = "”’K;./z
Sei = ~ml:(13-17) o)
wn _
:%k, - -'/M,)7 /?
where

Vea = electron-atom collision frequency,

Voi = electron-ion collision frequency,

ia = ion-atom collision frequency.
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The quantities Vear V and ke must be determined. This is

ei’ ia
covered extensively by Lawless. One further assumption is used,
namely, that the substantial time derivatives in the momentum
equations ( Du/Dt ) are small. This is justified for two
reasons: first, 3u/3t is small because the mean time between
collisions is on the order of 10 nsec while all characteric time
scales in the equations are much greaﬁer, and second, udu/d¥x is
small when the Mach number is small ( electron or ion ). The
first part is always easily satisfied. The second part is not
well satisfied near the electrodes for the ions, and not well

satisfied near the electrodes for the electrons when the sheath

heights are low.

We now introduce the definition of ambipolar flux and

resulting equations:

- A
7= 17t 2 e an
where
A / ’ = L
T i T ke a2

The quantity T is called ambipolar flux and LA and U, are called
mobilities. With these definitions and assumptions we can write

eq.5 ( ion and electron momentum ) as

~9p T (13)

—

Similarly, we can write conservation of mass as

}9t Jx(’“’ﬂ) (/*ﬁ}S t; e 7x ;') (14)
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and conservation of energy as

3 —
In%(gﬁ),%(h%) - 2r 9(LT.)

2 X
(15)
z -
- E () + o s At
Two final approximations are used to close these equations:
®_ _ )
S7=-ES 169
and
o) 2
5= (aM- pre) e -

The first states that ionization is the only volume source term
for electron energy where EO is first ionization energy. The
second is a model for ionization and recombination. The quantity
a called the ionization coefficient, B is the recombination
coefficient and N0 is the neutral density. Again, the choice of

this model and its coefficients is covered in Lawless.

Now that the conservation equations and the constitutive
relations are established, we can derive boundary conditions for
mass and energy. These boundary conditions contain fluxes of
electrons and ions which are obtained from the sheath results.
The boundary conditions for mass come from eq.13,

[= a2 =-nulipt )+ %Y
7xh Alee Aoy ?’)
(18)

- 2P - ‘ '
I = -,a,-;fl =N (/*ﬁ)*?f‘;y?'

The quantities u, and J are the fluxes through the sheaths. The
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-10- CHAPTER 2
subscripts O and 1 denote the emitter and collector plasma-sheath
interfaces respectively. The boundary conditions for electron

energy are

-kl = -2/2(/:72,-/:75)”: (- Lo

ke Py // [ V
where

PE = flux of electrons from the emitter into the

plasma,

3
"

emitter temperature,

<
"

emitter sheath height,

<
n

collector sheath height.

We have assumed the collector emits nothing.

2.2 Isothermal Formulation

In this section the corrected isothermal model, based on the
isothermal model of Lam, and including ion reflection at the
emitter, is developed. Since we encounter both low emitter and
low collector sheath heights as a consequence of ion reflection
and trapped ions, the assumption of Boltzmann plasma electron
distributions at the plasma-sheath interface must be sbandoned.
At both the emitter and collector the low sheaths return few

plasma electrons, leaving the distributions largely one sided.
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-11- CHAPTER 2
Furthermore, at the emitter sheath emitted electrons must be
taken into account. Thus the ratio of electrons moving toward
the sheath to the total density of electrons at the sheath edge

is not 1/2, as in the Boltzmann assumption.

| 3
— g 4
P’
: X
Axl s | !
i ! Vout
' '
| '
b 5 :
i i
! 1 -
0 o* " Lo X

Figure 2.2.1 The Potential Distribution in the Convertor

In fig. 2.2.1 we define the potentials in the convertor. All
of the potentials are nondimensionalized by emitter temperature

as follows:

PRI
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where

»
]

nondimensional potential,

b
n

potential,

electron charge,

£
i

Boltzmann's constant,

-
n

TE = emitter temperature.

We also use the following terminology for various potentials in

the convertor:

¢_. = emitter work function,

Ax

back sheath height,
Axs = reflective potential,
X, = emitter sheath height,

E

Axp = plasma potential drop,

<
]

d arc-drop,

collector sheath height,

bad
L}

.
L}

collector work function,

= tpu .
Vout convertor output voltage

Inspection of fig. 2.2.1 yields immediately the following

relations which will be useful later:
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VJ = youf —(¢;-@¢)—Ax (2)

h

Ve (XC—XS) - Axl’- (3

Some further preliminary definitions are also needed. We have

the Richardson current density of electrons from the emitter,
ampS | 2 ,,2 \
J () = 120 2K exp &)

The emitted current density which crosses the emitter sheath

potential peak into the convertor plasma region is

- -A
Je = Jg€ 7()47(>o,

(5)
=1 ,Ax<o,.

We also define the net current density through the convertor, J,

and the normalized current density,
s :I// 6
J= 1 ®)
Electron temperature is nondimensionalized as

T = -Té "%E' (7)

where Te is the plasma electron temperature which, in this
section, is constant by the isothermal assumption. Finally we

have the thermal speeds,

Q. = Skl (8)
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= /8K 9
C De Vég

The isothermal formulation is developed from here in the same

i. way as the general formulation except that we take full advantage
of the isothermal assumption by looking only at the global
conservation equations instead of the local ones used in the

(1] general formulation. We then assume that the transport

properties, collision frequencies, and the ionization source
coefficient are constant across the convertor because of the
h( isothermal assumption. Also we find only the steady state
solution. We carry out this development by deriving the global

conservation equations for the isothermal case ( current,

® momentum, and electron energy ) and then reducing these to a set
of three simultaneous equations in the variables 1, XE, and xc.
} These equations are nonlinear and solved numerically using a

- positive definite Newton's method explained in appendix B.

First we consider conservation of current. The collector is
assumed to emit nothing, therefore at the collector plasma-sheath

interface we have

T=  Q%00) o Xes
2

is the fraction of the total plasma density at the

(10)

where “1

? In some cases the the actual calculations are carried out using
different variables when X, or X. are small or zero.In the case, )
for instance, of a single “ion repelling emitter sheath we use j
because Xg is zero.

« o e e e o "t L tete
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collector sheath which is moving toward the collector and n(1) is
the total plasma density at the plasma-collector sheath
interface. ‘Because we continue to assume that the plasma
electron distribution there is Maxwellian, we can write a, as

I

=TT I Ry, a

which takes into account the plasma electrons reflected by the
collector sheath. We still assume that the plasma electron
distribution coming into the collector sheath is Maxwellian and
that it does not have any velocity shift because the sheath is
expected to be electron repelling. In the 1limit of a high
collector sheath, @, = 1/2 and we have a fully Boltzmann
distribution of electrons at the collector sheath edge. The
situation at the emitter is more complex because the emitted
electrons must be taken into account. We have the back scattered

current density, which is the plasma electron current

Jps?

density moving into the emitter,

ﬂ(o) OQ ”o - 1;4, (12)
_""2_ e

where n(0) is the total plasma density at the emitter sheath-

Jos =

plasma interface and a. is the fraction of total plasma density

0

at the interface moving toward the emitter.

Continuity of electron current demands

J.= Jest J (13)

which can be written as
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- ne o, *-X§ (14
JE- j-(,+ n()) v, exF( "l')). )

This can be rewritten using eqs.3 and 6 as
J = ! (15)
- (o) d, VAL .
I+ 2= -;:-exp(_sl?._r)

The quantity a, can be written as
b 4
= X - t/T
m, I/Z 4 (f /)e (16)

e
Ve

is the electron Mach number at the emitter. This is just an

where

application of eq.13,

Electron energy conservation is developed by considering
energy exchange with the emitter and collector and energy lost to

ionization. Power carried into the plasma by emitted electrons

is
- rax) K,
PE JE(Z‘*@; ) ? a”n
Power returned to the emitter is
B = (JE-J')(ZT«P@EMX)% . (18)

Power flowing into the collector is
P= I(2T+@;+AX+VJ)-%E . (19)

Ionization power loss is

)
- A A .
A daanasas oo s b
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Pien = 'I'on %l. Ef‘-ﬂ ) (20

where Jion is the total ion current into both the emitter and

collector, and Vfi is the first ionization energy. Conservation

of electron energy is

PE = P;3+Pc + Pion (21)

this can be reduced to
= -4 -]
T= [I-ziva -4 V. (22)

where ji =7 /JE. In the ignited mode t is generally about 2 (

ion
Tg

negative. In other words the high plasma electron temperature is

= 1500 K and Te = 3000 K ), consequently the arc-drop, Vd, is

generated by resistance heating.

Finally, we consider electron and ion momentum. From electron
momentum conservation, we find the potential drop in the plasma
region. By adding the electron and ion momentum equations as in
the general case, we find our diffusion equation and boundary
conditions to which the sheaths contribute flux terms. When we
introduce the ionization source term into this, we have the

complete formulation. Electron momentum conservation is

= -d d4 mny,
o= 3%‘“3"37"4‘%‘) (23)

where Xe is electron mean free path. Using P, = nkTe and J =

qnu_, we can rearrange eq.23 into

= —fAe
T FemGemg) e
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This can be further reduced by dividing by JE and using § = x/d

where d is the convertor gap thickness:

"="7rA¢
J 4dﬁvn,[7ds 7 } (@)

Integration of this equation from the emitter sheath interface to

the collector sheath interface yields

= Tin(20 )+ iR
where
]
44 j
R= £ 0T 595 - (27)

The quanity R is the normalized plasma resistance.

The ion and electron momentum equations can be written

T.d = _gpd? _ mnu.q
ke z”dx lit

(28)

k‘ Jﬂ 3” d4' - Mf)l(.’q,’
A;

where Xi is ion mean free path and a, is ion thermal speed,

i

4."")/;,-&;7‘77‘:'-

Addition of eqs.28 yields

(k7;+,é7£)a%'(") = - /%”&f%ﬂm '7/ (29)

which is ambipolar diffusion. Equation 29 is differentiated to

become

(k&-ré@)ﬁ * _j_ _d.(rme) + 9 ac’»’ (o). ©O
X
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At this point we assume recombination is negligible and the

ionization source term is

-;lx(ugn) = a‘i,-((u;n)= Sa

(31)
Using eqs.31 in eq.30 yields
d’n [ QeM . ;M 2
ot [C2 ) sdfn-0 o

Equation 29 taken at the boundaries of the plasma ( at the
emitter and collector sheath interfaces ) forms the plasma

boundary conditions

n) . dn) _
g;-p'- 160”0 ; 2—;«-' - -Flﬂl (33)
where
= =d @y + QLM_U,.
po= i (5 T,
J (34)
- Q, M
= Uey + AN u-)
/61 k7;+A7‘E( e €t A,‘ Vi .
Equation 32 is written as
d*n s =
.&_;_L + AmMn=0 (35)
where
_ %m M

where A(1) is the ionization coefficient and is found from

consideration of ionization kinetics. Its solution for n is

n(j) = 55},7//4;‘/' C) 37

LR
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‘_
|

‘ (N where B and C are constants of integration and A=A(t). The

[ quantities Bo and Bl, which are the boundary conditions for

.

a’a

Significant reflection on the emitter side reduces BO and it may

indeed attain negative values for sufficiently strong reflection. .

= eq.37, can be written as functions of t, Xgs Xo and Ax_, PSR
i ° A= po (7; Z‘)x‘) AZ,), (38) ‘ J‘
{

| A=l (7 2, Xe 82,) "
) When there is no reflection, Bo and Bl are both large, i.e., . '
® y -
b (/1,) ) £ s ( i :

K

y

The density equation (eq. 35) with the boundary conditions 80
- @ and Bl is a linear eigenvalue problem; its solution yields A and ———
C as functions of Bo and 81. The calculated results are shown in

fig. 2.2.2. Since A(t) is function of t from the ionization

2 © kinetics, the value of t is thus determined by a function of Bo
and 81. The plasma resistance, R, also can be expessed in terms

of functions of B, and B, through A and C using eq.27:

Var 2, re +..,(i)

‘ R__ . d 'T'Q sinC / ‘fdn["") (39) .‘

'.'( Using the sheath results which provide j, Q, Bo and Bl, the
isothermal formulation is complete. The results are summarized

:j below. The quantities Bo, Bl, Q and j are found from the sheath

' « calculations as functions of «t, XE, Xcs and Axs, i.e.,

2 ;, = ﬁ, (T xr)x«.)AXs)’ o

F; (‘T) Xg, L,M:),
Q=@ (7T, Xe, X, bXs), o
. )= J (T, Xe, A, bXs) . e
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Bo

Figure 2.2.2 The Eigenvalue Problem

From the eigenvalue problem for the plasma density we then find
A = AlB.,B,). (40)
From the continuity equation for current we find

Ko%= Thn (SR ) +rind vrin (L),

And from the electron momentum equation we find

sm(MC)) 2(T-) _ J;
x-1e = 70 (Gire +jR+ 2020 W P

These three previous equations determine Xgs Xc and t when Axs is

_______ ——
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| given. This set of equations is valid for all Axs. Even in the
case of Axs <= 0 when there is no reflection, the calculations
differ from previous isothermal calculations because the

Boltzmann assumption on the electrons is not used as indicated by

the presence of e, and a,.
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CHAPTER 3: SHEATHS

3.1 Assumptions
3.2 General Solution Condition
3.3 Equations

.4 Sheath Solutions

w

In this chapter the collisionless sheath formulation is
developed. The sheath formulation and its results are essential
to thermionic convertor formulation because two pieces of
information are required from the sheath:

1) the potential change through the sheath, and
2) plasma density boundary conditions, and in the
non-isothermal case, electron temperature
boundary conditions.
Both of these have significant effects on predicted thermicrnic
convertor performance, and therefore sheath formulation is of
great interest. In addition to calculating more accurate sheath
results than in previous sheath formulations, we examine three

expected emitter sheath phenomena:




€
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1) plasma ions reflected by the emitter sheath,
2) ions trapped in the double emitter sheath, and
3) surface emission ions from the emitter surface.
These three phenomena and more accurate results require
generalizaetions to previous formulations along two lines. First,
the assumption of cold ions ( monoenergetic plasma ions ) cannct
be retained since ion reflection begins with the lowest energy
plasma ions and reflects only the part of the ion distribution
that has energies lower than the potential rise through the
sheath. Second, previous formulations have idealized electron
dynamics in the sheath under the assumption of a large sheath
height. 1In fact the actual sheath heights are of order unity,
and therefore this is a poor assumption. Complete calculation of
the electron dynamics converts the simple algebraic equations of
the 1large sheath height formulation to equations containing
integrals over distribution functions that must be integrz:zed
numericelly. By contrast, the finite temperature ion
distributior causes theoretical difficulties which must be
carefully considered. The cold ion formulation uses the Bohm
criterion on ion kinetic energy to assure a self-consistant
sheath solution. We show that a finite temperature plasma icn
distribution must have its low energy tail cut off before it
enters the <collisionless sheath since otherwise no self-
consistant sheath solution exists. We expect a transitionzl
region tc exist between the collisionless sheath and the neu:tral
plasma since we are asymptotically matching the two. This region

would be collisional but with relatively strong electric I:eld
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that would accelerate and depopulate the ion distribution of low
velocity members. Therefore we cut off the low energy tail of
the ion distribution. We show that the minimum ion distribution
shift speed depends logarithimically on an arbitrarily chosen
cut-off of low energy ions, thus we can therefore pick an order-
of-magritude cut-off with little effect on the physical outcome.
In both the cold ion and finite temperature ion cases, self-
consistantcy is critical at the plasma-sheath interface, and we
develop a generalized self-consistancy condition which includes

the original Bohm criterion as a special case.

When trapped ions and surface emission ijons are consicered,
the point of critical self-consistancy moves away from the
plasma-sheath interface into the sheath. The new generalized
self-consistancy condition remeins valid for this case. The
amount co¢f surface emission ions present in the sheath is
determined by the Saha-Langmuir equation and thus by the
temperature and work function of the electrode along with the
neutral pressure next to the electrode. On the other hand, the
amcunt of trapped ions is determined by the coll’‘sional processes
( largely charge exchange ) in the sheath. The amount of trapped
ions caanot be easily calculated because of the complexity of the
ccllisional processes. Threrefore, we estimate the amount of

trapped ions and produce results for a range of values.

3.1 Assumptions




4= CHAPTER 3

In this section we list and discuss the assumptions of the

present sheath formulation and their justifications. The present
formulation,‘which removes some previous idealizations, assumes:

1) the sheath is collisionless,

2) the electron distributions from the emitter and collector
are Maxwellian with the emitter and collector
temperatures respectively,

3) the plasma electrons are Maxwellian with the plasma
electron temperature,

4) the ion distribution from the plasma has the neutral
temperature, and is a shifted Maxwellian
distribution,

5) at the plasma-sheath interface, charge neutrality exists,

6) at the plasma-sheath interface, the electric field is
small ( in the match-asymptotic semnse ),

7) the trapped ions have a Maxwellian distribution with the
emitter temperature and an arbitrarily specified density,
and

8) the surface emission ions are emitted with a Maxwellian
distribution governed by the Saha-Langmuir equation.

In contrast, most previous fcrmulations have assumed:

1) the ion distribution is cold,

2) the plasma electron density in the sheath is Boltzmarnn
with potential, and

3) the emitter electron distribution is also cold.

These three assumptions simplified the mathematics considerably,

but produce relatively large errors in the sheath results,
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particularly for small sheath heights. Since the emitter sheath
effects of interest here, namely reflection, trapped ions, and
surface erission ions, produce smaller sheath heights, it is
essential to remove these assumptions. Additionally, the cold

ion assumption is totally incompatible with ion reflection.

We can formulate the sheath using the Poisson equation in one

dimension,

5;_1 = ‘7ﬂ7;(/h7{¢§)' Ahz(ﬁﬁ)/)) (1)

where ¢ is potential, x is distance into the sheath, q is unit
charge, ni(¢) is ion density, and ne(¢) is electron density. The
quantities ni(¢) and ne(¢) are only functions of ¢ by virtue of

the collisionless assumption. In non-dimensional form, eg.1

becomes

dx _
T F(x)/

where X = (q¢)/(kTE) , & = x/kD, and where

[#7 !
ﬂ’ = .4”317). (3)

which is the Debye length. The quantity n, is the plasma density

0

at the plasmz-sheath interface. The function TF(X) Is

F(X} = I)l(l)r: nc (x) ) )

4

The collisionless assumption is used because the Detve lengih in
the thermionic convertor is always at least an order of magnizude
smaller than the mean free paths. In principle, & transitionel

laver must exist to buffer between the collisionless sheath and
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the continuum plasma. This layer would also accelerate low
energy ions and therefore cut off the bottom of the ion
distribution: The cut-off is arbitrarily determined, but hes a
weak logarithimic effect on the sheath results ( it raises ion

distribution shift speed ).

Assumptions 2 and 8 regarding the surface emission of
electrons and ions are expected to be very good because the
surface temperatures are high. The emitted distributions should
be indistinguishable from Maxwellian distributions. The other
assumptions regarding distributions, 3,4 and 7 are more tenuous.
The ion distribution is assumed to have the neutral temperzture
because there is large charge-exchange collision cross-section
between the ions and the neutrals. The shift in the ion
distribution ( assumption & ) is to be determined as the minimum
shift required to construct a self-consistant sheath. The
assumption that the trapped ions are at the neutral temperature
is also based on the predominance of charge exchange collisions.
The assumption that the plasma electrons are in a Maxwellian
distribution with their own temperature is based on the length cf
the convertor plasma region ( approx. 15 mean free paths ). The
convertor is long enough that the electrons have <time %o
equilibrate with each other but not long enough to equibrate with

the ions. !

! See, for instance, Montgomery, p.33.
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3.2 The General Solution Condition

Before proceeding on to discuss the possible sheath
configuratioﬁs and their specific equations, we develop the
general solution condition which applies to all collisionless
sheaths to preclude consideration of non-self-consistant
solutions. Asymptotically matching the collisionless sheath to
the quasi-neutral plasma always requires some condition on the
ion distribution function coming into the sheath from the plasma.
In the past this had been the Bohm criterion which assumed cold
plasma ions and required the monoenergetic plasma ion

distribution to be shifted up in velocity to

-
Ur = V 5F

where Te is plasma electron temperature, k is Boltzmann's
constant and M ion mass. In this section it will be shown that a
general condition for solving the collisionless sheath with a
neutral plesma-sheath interface exists and that the Eohm
critericn and other local ( at the plasma-sheath interface )
matching conditions are special cases of the general condition.
We show that local matching is a necessary but not sufficient
condition on the sheath solution. In the absence of trapped :ions
or surface emission ions, &s is the case with most peast
calculations, local matching proves to be also sufficient.
Further, we show, in the case of no trapped ions or surface
emission ions, that for finite temperature the ion distributicn

must have no zero velocity ions when it enters the collisiorless

sheath.

- 1
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A self-consistant sheath solution is found by integrating the

nondimensional poisson equation from the last section,

é%:;% = F). (1)

The specific forms of F(X) are developed in the next section but

we need not know them until we wish to evaluate specific cases.
5 By convention X = 0 at the plasma-sheath interface and increasing
3 2

P X repels electrons.’ To construct a non-trivial solution we

integrate eq.1 as follows,

CIR R
o (3)
\ Y
L)) | oo
t, X, (&)

Transforming eq.3 into eq.4 implicitly assumes X(§) is monctonic

on the domain (El,zz). Since at the plasma-sheath interface, we

assume charge neutrality and zero electric field, we have F(() =

0 and dx/df = 0. Therefore we can write, S

18- [ Feod ( o

"
N~

and,

(€3

? cince T(O
solution X

~

= 0 by charge neurelity, there is alway the triviel
0.

C -
»
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Equation 6 is the method for constructing non-trivial solutions.
From eq.6 and our previous observation about converting eq.3 into

e5.4 we cen see that that inequality,
X
> <
ff(xidx-o , 0 <X<X, -
o

must hold where x. is the first maximum or minimum X reaches in
the sheath since otherwise x(§) is not monotonic. If we attempt
to construct & sclutior which does not meet this condition, then

eg.6 causes Xx'f' t¢ double back before reaching its full sheath

height

Snowr be.Amw it ' gs . 1 a, through 3.2.1(d) are the
e¥:z2.ted e~ .tter 4 .o v " % awiens and  their soluticn
cenditizre from e “ev 3+ agr-anged 1n the order that we
expe:zt tiew - o .t a4 ce7  Lroent Aern .ty through the converter

is reducec and ihe ra°.c .f em. ter Richardson current density to
neT urrent  densiiy  il.ileastes From the general soluticn
ccnditiorn (egq ", we can qer.ve necessoty local ( at the plasmsa-
sheath :n:erface ) matching conditions, of which generalized Bohm
criterion is & special case. We can expand F(Xx) around x=0 as
» o ”
Fx)= ZM"-Zb.x"‘/nl, (83
ns! 32
since F(X) may be represented asymptotically in this form for
cases we irtend to develop. Then eq.8 may be integrated,
[Foodx = 37 _dn__ !
Jo X

i
r 271 5)

- o bn L %l
é‘,_—j'("/vl 2" (In (") /).
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Figure 3.2.1(8) Single Electron Repelling Sheath

N\ T fox

lsﬁ F()dx20 0 <XSXe

Figure 3.2.1(b) Double Non Ion Reflecting Sheath

T—

X
w/ A\ f FGIdX 20 0 <X<X¢

Figure 3.2.1(c) Double Ion Reflecting Sheath

T—/—‘L_— x
M % /F(,;J;(.so , 0=x<aX

Y

Figure 3.2.1(d) Single Ion Repelling Sheath

The asymptopic order of the terms in this equation is &y b2 g, b3

a To insure that at least local matching is satisfied, the

3 ve-

first non-zero term must be positive. We call this the

A A

B4 STt
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generalized Bohm criterion. The usual Bohm criterion assumes

F(x) is expandable as,
, _ ?F} x+ 25) % ...
FOI= 0% Sth * 71), %17 o
in which case the criterion is

- 2F| >
a& = 97( xso.- 0. b

When only cold ions are considered, the Bohm criterion (eq.1l) is
sufficient, but when finite temperature ions are considered, we
must apply the generalized Bohm criterion. If trapped or surface
emnission ions are present, we find that local matching is not

sufficient and that the full solution condition must be applied.

3.3 Equations

In this section we develop the sheath equations for the
collisionless emitter sheath configurations shown in fig. 3.2.1
and for the collisionless collector sheath. In order to make the
derivations as clear as possible, we divide this section into
subsections for each of the cases listed previously and then
foliow a standard format in presenting the eguations. We divide
each subsection into the following order of presentaticn:

1. Sheath Configuration
2. Fi(x) and Fe(x)

3. Integrals of Fi(x) and Fe(x)

4. Equations: Fi(O) 1,

1,

F (0)

ARAral e Ao dat e e v
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b 3
min[ (FOOdX , 0 <=x<=x.]=0,
ijoothL =0

5. Usefyl Resultant Quantities
We begin each subsection with the sheath configuration and
appropriate definitions, and then derive the functions Fi(x) and
Fe(x) accordingly. These functions are respectively the tctal
ion and total electron densities as functions of sheath
potential. The the third part of each subsection, we find the
integrals of Pi(x) and Fe(x). The fourth part presents the
equations which are solved simultaneously for the sheath. The
equations Fi(x) =1 and Fe(x) = ] represent charge neutrality et
the plasma-sheath interface: the charge densities there are both
set egual to 1 because they are nondimensionaiized by total
plasma density, n,, at the plasma-sheath interface. The third
equation is the general solution condition, and the fourth
equation is a conditiorn which epplies only in the case of a
double sheath; it means that d¢/dx = 0 at the sheath peak. This
can be seer from eq. 3.2.5. These four equetions are used to

solve for the four variables:

Ni = density of ions moving toward the emitter
t the plasmz-shesth interface,

NE = density of electrons crossing the motive
peak { if any ) coming from the emitter,

NC- = density of electrons moving toward the emitter
at <he plasme-sheath interface, and

u, = shift :n the ion velocity distributicn coming

P
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from the plasma at the plasma-sheath intexface.
The first three of these variables, denoted by capital N's are
nondimensionalized by plasma density at the plasma-sheath
interface, ng- In the cases where no motive peak exists, the
fourth equation does not apply since NE is known. In general
these egquations must be solved numerically, and the numerical
methods employed are straight forward. Therefore, no discussion
of the methods is presented. Finally, in the fifth part of each

subsection, we present the useful quantities that the sheath

results produce.

a. single electron repelling sheath

1. Configuration

ety

In this sheath, which occurs at high current densities, the

Richerdson emitted density, NR, is equal to the emitted density,

NE’ because no motive peak exists.
s
2. Fi(x) and Fe\x)

The ion density is
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R
o
[ - .
) f -(“"(;) uda . ‘—d
= e o -
e gu DI
Ueet }
where u, is the ion distribution shift speed and Uoug 1S the cut- ® 1
b .
off of low energy ions. Both ug and u... 8re nondimensionalized
by . -]
[ ] U »
w = 5753 ;
M o]
Ie where U is velocity. The electron density is - .;
00 » 4
3
R = 4 [ <
j T 4o TR
-] @ /3; (2)
2 Xy *ud
M| e r2 [ e4tudu
TVE Varz, Fln VirE
4 v TVE
Q
where NE = NR and both are tne nondimensional emitted electron o
density at the plasma-sheath interface. The quantity T is the - ;
¢ nondimensional plasma electron temperature given by the ratio a -i
)
Te/TE. The first term in Fe(x) represents the decreasing density 3 K
contribution of emitted electrons &s they accelerate down the ff
( sheath. The second term represents the density contribution of Eﬁ
]

the plasma electrons which are decelerated as they climb zhe

sheath.

.( 3. Integrals of Fi(x) and Fe(x) '
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These are just the integrals of eqs. 1 and 2. The integral of

® Fi(x) is i
X b0 a .-’k
- -Cu-u . .
o f F(X)dX = / e ““ 2 (Vu'+ X -u) 4 (3) ’
o ! Gyt
¢ »
And, the integral of Fe(x) is -
Y . .
- -ty 2 [ &% 2y (u-Vig)du
L X — - e ) 17 = / e fu :
€ f@(x)a'x = p g7l /s ’
I ° 2 E_“z ) T
+ 'rﬁj e 2y*du
L ° i

w .
+Ne { Z‘ﬁ—. f & (o Jipeag ~ 2l +24X Jdug i

4. Equations

. L KRR
S
clal)

Q

Charge neutrality for the ions, Fi(O) = 1, is immedietely

i satified by egqs. 1 because no ions are reflected and therefore -
E{- N. = 1. Charge neutruzlity for the electrons is '

}. i

s~

b Tl
/= Felo) = N {2 |4 ud j S /{f ) =
) (R Vit Ny "7 "57_ | o

To complete the formulation, we apply local matching ( the bchm '-.,._'_’:.

-~

T Y &4 & T T L7 e v

criterion ) at the plasma-sheath interface. This can be done

because 1) the fourth equation does not apply since there is no
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motive peak in this sheath, and 2) local matching satisfies the
g=oneral solution condition is this case. Local matching is
sufficient because no trapped ions exist and we have assumed that
there is no surface emission of ions in this case. The
justification for assuming no surface emission and carrying out
local matching in this case is that when this sheath occurs
surface emission is entirely negligible. } Also, this case,
because of simplicity, is used to explain the need for a cuioff

of low energy ions in local Bohm matching. Local matching is

L]

done by asymptotically expanding F(x) = Fi(x) - Fe(x) at 0.

The lowest order terms are:

= '’ /A{ L(“d:O e-USz
F(X)= 0- x 6 of ot »o f — qu +06L/ng) (6)

The xl/z term in this expansion comes entirely from the 1low

energy ions entering the sheath. It represents the acceleration
of zero velocity ions of finite velocity. Since local matching
requires the lowest order term to be greater than or equel to
zero ( eq. 3.2.10 ), the cutoff of low energy ioms, Uit mus: be

greater than zero. Otherwise, no self-consistant sheath solution

can be constructed. We choose an arbitrary cut-off of

u = (.1)u

cut .1 mono

( U o is defined at the beginning of section 3.2 ) for two
Te&sons: first, the effect of the cut-off on Ugs the :ion

3 A: the hLigh current densities cerresponding to this sheath,

e ; ; : -6 ; ,
surface emission ion density is 10 = of total ion density.
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distribution shift, is logarithmically weak ( see fig. 3.4.3 ),

and second, we expect an intermediate asymptotic region to exist

[
between the collisionless sheath and the neutral plasma that
would accelerate the ion distribution and depopulate it of Ilow
[ energy iomns.

With this cutoff established, the expansion of F(X) is then:

® - _ Z . x
Fo)= 7 No%r[‘*ﬁﬁ du.rz\JEcllr
. N 2 J :-u" Fudy
), Lt
(u-g,)*
= Su«d’e :zll-{z d’&
. fo W JToot)

o where the term in brackets is 3F/3X and the generalized Bchm

criterion is

2F) 2
c 9x =0 * (8)

Equations 8 and 5 writ:ten as,

/= M Co )+ N C, (%,7),
N Co(Xe,7) = Me €, (R,) + Bl,), (%)

are solved numerically for u, and NO- when NE’ 1, and xE are

C given.

5. Useful Resultant Quantities
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The sheath solution provides the following functions to the

® rest of the thermionic convertor formulation:
E: E(zfl’,: NE))
J < J (15/7; N;))

- (10
. Q= Q (e, T, Ne) ’
W, = v, (te,7; M)
The first quantity, U, is the net ion loss rate
© » o —u-u)*
we “H
Py Y
u = = " . (1)
-(u-4;
”‘ce du
\( “
The second quantity, j, is normalized current
- _ J,
- J = /J'E (12)
@
where J is net current density
= .A_,‘_n_’ff - No_"?o Qe -xfﬁ' (13
X j 2 -——Z— e 13)
| @
Z and JE is emitted current dersity
Z = 2k ¢ y
I' J, n,N:\/;;‘l,‘# (14)
¢
: and where 8, and ap are the thermal speeds
- Bkl A
e =\ 7rm s Qe =Y -

, The third quantity is electron Mach number
! [
y ”m

(V1]
-

And, the fourth quantity, ey is the ratio of electron density at
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the plasma-sheath interface moving toward the emitter to the

total electron density there,

: O(o = M-z 1 (16)

-4

b. and c¢. double sheath

1. Configuration

( AX may be larger or smaller than Xg )

Ve develop cases b and c together beczuse the differences are
minimal. In this case the emitted density, NR’ is no longer the
same as the emitted density crossing the motive peak, NE’ becatse

the back sheath height, AX, repels some of the emitted electronms.

2. Fi(x) and Fe(x)

First, we consider Pi(x). This is the mest complicated cf the
two because we take into account three clesses of ions: plasma
icens ( ions coming onto the sheath from the plasma ), trarped
ions, and surface emission ions. The surface emission ion
density is known from the Saha-Langmuir equation and the plisma
ion density is found in the usuel way by setting Fi(O) = 1.

However, the trapped ion density is not determined by anything in
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the collisionless sheath theory; it is determined by the smzll

l 4
.\
P

® number of collisions that do occur in the sheath. It is not - -

known how to calculate the amount of trapped ions precisely, but

.
o

clearly it should be less than the local equilibrium ( "fully

gy

trapped” ) plasma density. The major source of trapped ions is R
P J

expected to be plasma ions passing through the sheath having

charge exchange collisions with neutrals.

To simplify the equations for Fi(x), we use a convention of »
comparing trapped and surface emission ion density to the plasma

ion density as illustrated in fig. 3.3.1. Figure 3.3.1 shows the

D )

distribution of ion velocity at the sheath motive peak. The ®
trapped ion region is limited by the lesser of AXx or Xg by
definition; an ion is not trapped if it has an energy grezter

than this. Trapped and surface emission ion densities are

denoted by ftr and fSLr' When ftr = 1 and fsur = 1, the dotted

1

curve representing a thermal equilibrium distribution ( based on

the density of plasma ions ) is filled by the trapped and surface "’ ]
emission ions. ;3
F,(X) is then .:'-f ]
F()= K Wt Fp0)t fam) @) S
where ?é;
L
24 e ) (2
z -
E(x) = 28 0 udu
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- e .

Figure 3.3.1 Trepped and Surface Emission Ions

at the Sheath Motive Peak
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In these equations two conventions have been used to simplify the
notation:

1) if 8 square root has a negative argument, then it is zero

2) if an integral's upper limit is less than the lower

limit, then the integral is zero.
This convention is followed for all integrals over distribution
functions. As before the densities ‘are nondimensionalized by
total plasma density at the plasma-sheath interface. Finally the
parameter fsur is related to nondimensional emitted density by

_ Ax-x
sur Ze E Fsurface. (3)

Electron density, Fe(x), is

The first term in this equation is the density of plasnma
electrons in the sheath. The second term is the density of

emitted electrons in the sheath.
3. Integrals of Fi(x) and Fe(x)

For the ions,

0, .
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L Ji Foodx = / xFﬂc,.. (dx i

(3 )
X e
. + j E,',.[X)dx (7 o
- () T
3 R ”"
pe * | £ codx ;T
[ T
o where .- ‘

X o .
L@t = [ e - a

¢ bewt ;
XA (8) .
+ f - (u-ty)* s
e € T au(funx -a)du) 1
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sz»;,, i =
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o furf 2] ¢ .%(LF

e'u\éu. - e ) } )

for AX = 7(E')

x
= -(_,u,.c‘

J et -

; ® (10)
for  AX2 K¢

For the electrons,
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n

) &
) ~ %/ T 1
No [7”[/-8 ]"’T[ %eﬂzu(u—\/“—"—g)d({

o)
o

(11)

P4
0

o]
‘+ 2
NE {ég e (Z“W“'I; ~2u ‘u'}j,#)a{q

W PR

4. Equations

First, we have Fi(O) =1 from eqs. 1,2,3 and 4,

R L R

" ‘
e 4w +

\)A‘ﬂ'le'

‘f . . b + .
_J.'ff-‘{ 5 €%+ S " - S
¥ Y Ut | !

‘ =

far
=

1
Lt T
RFASCE

o,
. e ;
R

A term for trapped ions does not appear in this equation beceuse
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trapped ions, by definition, do not exist at the plasma-sheath

interface. And, we have Fe(O) = 1 from eq. 6,

/= N (//*,r,’g'—':/ e-“a'u}

(13)

The other two eguations which apply in this section,

e
o

. x
mm[f F (0)dx , 02 X2 X ) (14)
o

and,

Xg
f F(x)dX= 0 (15)
0

ere straight forward epplications of the integrals of Fi(x) and

T _JNEURREENE
. U .

A PR
. PR
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Fe(x). We will not write out the details of these equations ,: .

since they cannot be solved analytically. The numerical solution EEANE..

of these is simple in principle: we have to solve four

simultaneous equations in four variables, N and u,

0’ NE’ fplasma

where f , £
s

Ax, u
ur

tr? XE’ cut and t are given. And, the four

equation can be reduced to two by using eqs. 12 and 13 in 14 and

15 to eliminate f and N. . However, the actual solution o
plasma 0 - -
*
for each case requires approximately 15 sec of CPU time on an IBM
370-3081.
r
- -
5. Useful Resultant Quantities » 1
The results of this sheath are presented in the same wey as in ftﬁ;f
3.3(2)5 except that hE is a dependent variable and the results b S
now depend on f__, f and Ax: S
: tr’ “sur X

A =‘7(X¢3 AXJT) '&r, 7&'/‘),

J = J’ (xE)AX)T) ﬂl‘) 740]‘)/ (16) :;i-uunﬁ
Q: Q(XF)AX)T; "&r)')e;ar), ‘::
% = %(ZE’ AX’T’ 1[:"') ‘A“r); .;-_EI
/VE = NE(&/AX}T; ‘&,—) ‘)c:ur), .
d. single ion repelling sheath ?
1. Configuration i o

_Ng s
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In this case, we have reversed the sense of X for convenience.
2. Fi(x) and Fe(x)

The ion density, Fi(x), is

T ~
[, g o [ oo
e

e
' Jux Vi)

(1

”"“""lf“du
Jﬁ‘e =% |

[

-
M)

[ od

-) e-( Qﬂsg + - (.Q‘Q;) t ISWN,
°© 4 .J; e du + {;CZ -f ef“‘ udu

. wY.

Fl_(JO =

We have contracted this expression for ion density to eliminate

Ni by using Fi(O) = 1 immediately. For this sheath

configuration, there cannot be trapped ions.

The electron density, Fe(x)’ is

oo

2

o=t el ~u uda
F;(“)-' P% {Eﬂj;e VGE;T?%;:

F " X (2)
+ Ne [/+ rf-;joe'“du e

where
Folo) = N"rNg= 1 (3)

and

~4x ()

-~

]
=
1

» |
.
CeTo
. y
. ]
"
ca ]
Y

CWP L, e e e
.
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3. Integrals of Fi(x) and Fe(x)

i® z

: / Fa)=

: o

jo

{ JER 0 o QE; —wr i

- o ) G € u- | 2ulEie "dd
_ szém'"’):iu + fla‘e du ~ _{é‘“ * Jﬁ‘“ - -
) — 2 °i§r’ o - (%)

+, P J;E-“"(W -wdx

,—*—."—.

-
»

"
s
4?€EAXJ‘GF“ uALL,
7 o Jbﬂ*ix

X
f A a)dx =

4 M[‘%(exifi’“‘&a- F) + (- l)]

4. Equations

Instead of presenting only the equations, in this case we can
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produce an analytical result. We find, analytically, that the
minimum for u is always less than 2zero for small Ax under
certain easily satisfied conditions. Regardless of AX, numerical

calculation always supports u, = 0.

To demonstrate that u, = 0 for small AX we assume fsur = 0 for
simplicity * and take the asymptotic expansion of the integrals

for u_ =0,
S

xX

x
F.0d- J:—;_a)dx

0

- '
éj’” lEE- 2 -

rram =

©

The general solution condition then requires

(8)

* In the cases that this sheath occurs, fsur is always small (

10-6 ) and does not affect the numerical conclusion that ug = 0.
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We now show that for J >= 0 ( positive net current density ) eq.

8 is satified:

= Ne G, N~
J = n, (._Z_t _ ozae)

“n g (-niom)

Then J >= 0 implies

- [
Moo = T2y - (o

Therefore eq. 8 is satisfied for J >= 0 and u, = 0 is a self-

consistant solution.
5. Useful Resultant Quantities

The resultant quantities of this sheath must be presented to
the rest the thermionic convertor formulation differently because
there is no sheath height, Xg. In fact from egqs. 3 and 9 (

charge neutrality and net current ) we can immediately derive
: Q (1+VT)
J

Q+ VE

The definitions of j and Q are as in 3.3(a) resultant quantities.

. (11)

Because of this, we present these sheath results in this case as

Q=Q(j,1),
u =0, (12)

11111
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e. collector sheath

1. Configuration

i

Since the collector is assumed to emit nothing, this case is

particularly simple. As in all other cases, the electron
distribution function is assumed to have no shift. However, as
will be seen in section 4.2 the collector sheath height is
usually small and goes to 2zero with ion reflection at the
emitter. Because of this it may be of interest in further work
to allow the electron distribution to have a shift and to

simultaneously allow an ion repelling collector sheath.
2. Fi(x) and Fe(x)

The ion density, Fi(x), is

/‘ ”e- )t :
A=, -

o e’y
bescr

and the electron density, Fe(x), is

(2)
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3. Integrals of Fi(x) and Fe(x)

In this case we do not list the integrals since local matching

always suffices ( because no trapped or surface emission ions

exist ).

4. Equations

To carry out local matching, we expand F(X) and apply F(X) >=

0. Fi(x) expanded is

F)= |- .!Qn__._é!.’_. X + 0(x%).

[y,

And, Fe(x) expanded is

Ew) = | = [$kfE Jx+ 0.

Therefore, the local matching condition is

_a¢-u_‘) /
-‘L l/ — po <l b

Ueut

This the classical Bohm criterion.

5. Useful Resultant Quantities

(3)

(4)

(5)
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e
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T

The results of this sheath are presented as:

) o mNS
o

[I= J(XLIT))

X
s ,
1 ) (6)
L‘ =
- f g (x‘)T )
®
where a, is the fraction of electrons at the plasma-collector
sheath interface moving toward the collector,
@ j
- —————
0/1 - 2 (1w 7
¢
: 3.4 Sheath Solutions
e
? Again, we divide this section into subsections for each type
? of sheath. Most of the results in this section are on the double
® emitter sheath because its is the most complex case and contains
: the emitter sheath phenomena of interest - trapped ions and
surface emission ions.
v(
a. single electron repelling sheath
N This sheath occurs at the emitter when the net current
density, J, is greater than appoximately 75% of JR. We do not
- present results for this case because they are expected to be
~ similar to conventional theories.

b. and c. double sheath
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This subsection on the double emitter sheath contains most of
the results of interest. In this subsection, we first ;~-
distinguish Fhe results of the present full collisionless sheath
theory from past approximate theories but still assuming no 'C;
trapped or emitted ions. We then demonstrate the effect of o
trapped ions on the sheath. We make no mention of surface
emission ions in this subsection because of their small amount
and small effect in the convertor at the current densities we -
make calculations for. However, surface emission is fully
included in all sheath results used in the thermionic convertor

calculations. a’

The essential diferences in results of the present full
collisionless theory and past approximate theories is illustrated
in figs. 3.4.1, 3.4.2 and 3.4.3. Figure 3.4.1 demonstrates the

relationship between sheath height, and normalized current,

XE,
j. The first curve ( to the right ) is the simplest approximate,

N S DRI
Sttt ey, E
A T L, .
PR P R T o

P

B 4

assuming that 1) the emitted electrons are monoenergetic at their
average speed, 2) the plasma electrons are in a fully Boltzmann
distribution despite a finite sheath height, and 3) the plasma
ions are monoenergetic. The second curve removes the Boltzmann '
plasma electron assumption. The third curve removes the cold

emitter electron assumption. And, the fourth curve removes the

final assumption of cold plasma ions. The first two changes are ,:
unequivocal corrections to the sheath theory. However, the last -
correction, removal of the cold ion approximation requires the :;

imposition of the cut-off of low energy ions. The cut-off, as ,

discussed previously, is set at 10% of the monoenergetic Bohm
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Figure 3.4.1 Net Current and Sheath Approximations
@
speed. Figure 3.4.2 shows the effect of these approximations on
the ion distribution shift speed, u_. It should be noted that u,

e

compares closely with the monoenergetic Bohm speed until the cold
ion approximation is removed. Figure 3.4.3 shows the effect of
the cut-off on shift speed, us, in the full sheath theory case.
The weak variation of u is the justification for an arbitrary
Ut We have made no mention of the back sheath height, AX,
because its effect on the results is very small. However, this

is not the case when surface emission ions or trapped ions are

included.
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M pe )
~

Trapped ions have a substantial effect on the sheath solution.
Figure 3.4.4 shows the general solution condition for a double
sheath with Xg and for ftr = 0.0 and for ftr = 0.2. In the no
trapped ion case ( ftr = 0.0 ) we have local matching in which
the critical point occours at the plasma sheath interface ( x = 0
) As trapped ions are added, the critical point moves into the
sheath ( ftr = 0.2 ). Figure 3.4.5 shows the sheath potential
versus nondimensional position, § = x/XD. The two cases shown

are for ftr = 0.0 and ftr = 0.2 corresponding to fig. 3.4.4. 1In

the no trapped ion case the potential drops rapidly from its peak

.......
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Figure 3.4.3 Effect of Cut-0Off on Shift Speed
at Xp = 2.0 to Xg = 0.0. In the ftr = 0.2 trapped case the

sheath drops rapidly to the critical matching point, where i:
levels out asymptotically and then continues its drop to x = C.0.
This asymptotic region has & finite slope in £ig. 3.4.5 becsuse a
numerical factor has been added for display purposes. The
existence of this asymptotic '"flat <pot" is not troublescme
because a slight increaese in ug will remove it. Figure 3.2.6
shows the trapped ion effect on ug for various XE' Orly a
certzin emount of trepped ions can be added before no sheszth

solution exists. Trapped ions added for a given sheath height,

-,

- e
T
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Figure 3.4.4 Solution Condition with Trapped Ions

X require a larger nE ( emitted electrons ) and a smaller No- (

E!
plasma electrons ). The solution fails when the required NO- is

less than zero ( & negetive density of plasma electrons ). The
feilure point, in ftr’ decreases as XE increases. This is
because the total density of trapped ions that corresponds to a
given ftr rises exponentially with XE' Figure 3.4.7 shows the
effect of trapped ions on nondimensional current density, j. The

essentiasl feature here is that trapped ions reduce Xg for a given

3.
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: B
The sheath results on trapped ions so far have assumed Axs >= S
0 ( a reflective double sheath ), in which case the effects of
‘( Axs ( on all but the amount of ions reflected ) are

insignificant. However, when Axs < 0 the amount of trapped iocns

is controlled by the back sheath height, Ax, but the msatching is

contrclled by local matching at the plasma-sheath interface.

Figure 3.4.8 shows this effect on ug for Xg = 0.5. VWhen Axs =

0.5, back sheath height is zero. 1In this case the shift speed,

( v, = 1.95, is the expected result ccrresponding to the no trepped

ion case. However, as the back sheath height, AXx, increases from
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Figure 3.4.6 Shift Speed with Trapped Ions

zero the matching remains local while trapped ions accumulate in
sheath peak. This causes ug to rise and also causes j to rise {
fig. 3.4.9 ). TFor display purposes u, has been limited to 3 by
the numerical routine. As can be seen ug increases exponentially

with AX until Ax = %X, where trapped ions begin to contrcl

E

matching. For the purpose of clarity, u, is shown to have a

finite slope at AX = X. when in fact the slope is infinite.

E

After AXx = X, is passed g drops to its value shown in fig.

E
3.4.6.




-42- CHAPTER 3

TS T UERTTY v os -,
'
® .

5

o~
R <
S —~

L

N

Figure 3.4.7 Nondimensional Current Density with Trapped lons

d. single ion repelling sheath
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The results in this case are very simple:
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Figure 3.4.8 Effect of Back Sheath Height on Shift Speed

e. collector sheath

This is the classical Bohm matching case. TFigure 3.4.10 shows
the collector shift speed, u,, versus collector sheath height,
The curves shown are for various ion distribution cut-oifs,
u = .1, .01, .001, .0001. The notable feature here is thz: g
drops to negative infinity at a finite but small xc. This is
expected because a small sheath should not have & pre-shec:h

region capable of accelerating ions to a high speed.
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CHAPTER 4: ISOTHERMAL SOLUTIONS

4.1 Effects of Ion Reflection
4.2 Effects of Trapped Ions
4.3 Effects of Surface Emision

4.4 Comparison with Experimental Work

In this chapter we develop and discuss isothermal solutions
for the thermionic convertor with the emitter sheath phenomena cf
ion reflection, trepped ions and surface emission ions incluced.
All three of these phenomena increase in significance as net
current density through the convertor is reduced. Each of the
these reduces the net ion loss rate to the emitter and
consequently increases zrc-drop ( therefore degrading performance
at low current densities ). This increase in arc-drop is in
agreement with the same tendency in the experimental results.
However, the experimental results alsc show a plateau ( of low
arc-drop )} at low current density. This plateau occurs &t a
current density corresponding to significant surface ion emission

and is therefore thought to occur as surface emission replaces
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volume ijonization as the dominant source of plasma ions.
Unfortunately, the theoretical calculations cannot be carried

into this region because the collisionless collector sheath

matching ( to the neutral plasma ) fails.

To provide a realistic framework for presenting the results of

this chapter, we consider the convertor conditions shown as case

CASE 1 CASE 2
TE = 1500 K TE = 1750 K
Tc = 750 X TC = 750_K
P.s = 1 torr P.s = 1 torr
d = 16 mil d = 10 mil
= 2 2 = 7
¢E 2.12 eV ¢E 2.67 eV
= = J
¢C 1.60 eV ¢C 1.73 el
- 2 2
JR = 20 amp/cm J, = 7.57 amp/cm
R
3 . =1.80 x 107> amp/em® J__. = 2.10 x 10™° amp/cm?
es+ = 1 ip/cm cs+ . mp/cm
Figure 4.1 Isothermal Solution Conditions
1 in fig. 4.1. Case 2 is shown because it has the largest

surface emission of any typical thermionic convertor operzting

cendition ( beceause the work function is high and the temperature

is also high ). 1Instead of presenting case 2 seperately, we
demonstrate the effects of surface emission in case 1 by
increasing the surface emission by a factor of 100 thereby

bringing it up to the level in cese 2. The net current density
at which surface emission becomes significant can be estimated by

multiplying Jcs+ by the square rocot of the ion to electron mass
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; ratio ( approximately 500 ). In case 1 this means that surface
i
“. emission becomes significant at J = .01 amps/cm2 while in case 2 i

3 significant surface emission begins at J = 1.0 amps/cm2 _

Py R
4.1 Effects of Jon Reflection 4

In this section we develop the isothermal results for case 1

) with ion reflection, but without trapped ions and with the small .
amount of surface emission ions of case 1. Figure 4.1.1 is the
C-V diagram for this case. The dotted line extending upward from

( peint A is the single electron repelling emitter sheath solution. ..
However, we have not taken recombination into account in this .
isothermal calculetion nor have we included the Schottky effect,

o both of which are expected to become important at current .,___-
densities near JR. Therefore the curve above point A should be -
treated as gualitative and not quantitative.

° | . o | -

The interest of this thesis begins at point A, where the ’
single sheath doubles over. Between points A and B, where the |
back sheath height, AX, is less than the sheath height, XE’ the

¢ emitter sheath is non-reflecting. In this region the shezth .
heights, XE &nd xc, remain constant while the plzsma density is
proportional to net current, J ( the normalized plasma density

¢ nc/J is constant ). Only the back sheath height, AX, changes &nd )
the C-V curve in this region is Boltzmann ( t'he arc-drop is :
constant ). Beginning at point B and continuing to point C, the

¢ double emitter sheath reflects plasma ions because the BDack .

sheath is larger than the front sheath, in other words <the :'_'.-‘_':
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Figure 4.1.1 C-V Diagram with Ion Reflection for Case 1

reflective potential, Axs = AX - XE’ is positive. The result is
that net ion loss rate, u, decreases and that arc-drop increases.
The dotted curve BD is the same double sheath except that it
assumes no ions are reflected; therefore W is constant and arc-
drop is constant. The two curves BC and BD are almost
indistinguishable because the increase in arc-drop is small until

the net current density is extremely small. The reason for this
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is that the shift speed is approximately u, = 2 and therefore a
large increase in reflective potential is required to change u

significantly ( the half reflection point is Axs = 4.0 or

approximately J = J e-a = .4 amp/cm2 ).

R

The curve EF is the single electron repelling emitter shezth
case. It is the limiting case for large amounts of trapped ions
in which the double sheath peak has been completely suppressed
by the trapped ions. As is explained in sections 3.3(d) and
3.4(d), the solution condition is satisfied by v, = 0. This
curve is not topologically connected to the curve ABC; it will be

shown in section 4.2 that trapped ions move ABC toward the single

ion repelling sheath case. Curve is much steeper ( a faster

increase in arc-drop ) in this case because us = 0 ( the helf
. L c , . . _ 2

point in ion reflection is approximately J = 8 amp/cm” ). Curve

EG is the single ion repelling case assuming no reflection and is

therefore a Boltzmann line with constant arc-drop.

At points F end C the solutions fail at the collector. The
explanation for this failure is best given by examining figs.
4.1.2, 4.1.3, 4.1.4 and 4.1.5., Figure 4.1.2 is the normalized
plasma density through the convertor gap. The highest curve with
no reflection, Axs = 0, has the largest plasma density at <he
collector but the lowest plasma density at the emitter. Ion
reflection, which decreases the ion loss rate to the emi::er,
raises the plasma density at the emitter but lowers the plasma
density at the ccllector. The lower plasma density at the

collector forces a smaller collector sheath height to pass the
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Figure 4.1.7 Normalized Plasma Density with Reflection

net current density. This can be seen from eq. 2.2.10. Figure
4.1.3 is the potential through the convertor under the same
reflection conditions as in fig. 4.1.2. 1In fig. 4.1.3 the first
two spaces on the left make up the double emitter sheath, and the
last space on the right is the collector sheath. The region
between the two sheaths is the neutral plasma region. In the no
reflection case, it can be seen that the potential has a
pronounced well in the middle. This is the result of the large
plasma density in the middle. As reflection increases, this well

disappears on the collector side of the plasma because resistive

0. 00 0.20 0.40 X/ 0.60 0.€0 1.0¢

e
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drop there ( due to low plasma density ) increases to the degree
¢ that it is greater than the ambipolar rise ( due decreasing

density toward the collector ). Simultaneously with plasma
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potential gradient at the collector becoming negative, the
collector sheath go toward zero height. Figure 4.1.4 shows the

critical collector sheath quantities as the collector sheath

Gu

RO

J.

BURD

U

Xe

~+ B T —t . S
e, - - . } - - i
U.Jo C.ZoC i. 02 1.5C c.od . T

AX,

Figure 4.1.4 Collector Sheath Failure

.0u

on

failure occurs. Collector sheath height, x. goes toward zero,

C
, 8oes toward negative infinity ( see fig.

the shift speed, u
sc

3.4.10 ), and the ion loss rate to the collector, Tz‘c, is driven

to zero. Figure 4.1.5 shows the changes in the emitter sheath
height, ion shift speed and ion loss rate. When the collector

sheath failure occurs, the ion loss rate to the collector is zero




-9- CHAPTER &

.20

1

AN

MU

U.0U

JoGo .38 1.us 1.5¢C 2.0 €. >0

Figure 4.1.5 Emitter Sheath During Reflection

( “c = 0 ) and the corresponding plasma ion distribution at the

collector is bunched at zero velocity ( u__ = -« ). While the

sc
mathematics hold self-consistantly until'ﬁg = 0, the physics is
clearly poor at this point because'ﬁ; = 0 demands that the plasma
ions at the collector have zero energy ( zero temperature and
zero mean velocity ). An estimate of when the physics becomes
poor is u, = 0. At this point the net ion loss rate is close
to the thermal speed. A second physical difficulty that occurs

with collector sheath failure is that the electron Mach number

there, Qc, ( from eq. 2.2.10 ) becomes
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because the collector sheath height approaches zero ( actually
about .001 ). In the present continuum formulation of the plasma
region, it w?s assumed in eq. 2.1.13 that Qc is small so that the

electron momentum term, uedue/dx can be neglected.

One could take the solution below the collector sheath failure
point if 3; could attain negative values or if Qc could attain
values 1larger than v(2/m). There is no physical basis for
assuming that':; can become negative since the collector emits
nothing. However, there is a physical basis for allowing Qc to
be larger than v(2/1), ( an electron distribution shift ) as can
be seen in fig. 4.1.3: the pctentiel drop nearing the collector
becomes progressively more electron accelerating as the collector
sheath fails and therefore the electron distribution should be
shifted as the ion distribution is in an electron repelling
sheath. However, this would clearly invalidate the assump:iicn
that the electron momentum term is negligible. Therefore the
momentum term must be added to explore further in this direction
and this has not been done because of the resulting complexity in

the equstions.

Comparison of fig. 4.1.4. to fig. 4.1.5 at the colieztor
sheath feilure point ( Axs = 2.5, u = 0 ) shows that the ion
loss rate to the emitter is positive. At this pcint the plasma
is still ignited and generating ions as car be seen from figs.
4.1.6 and 4.1.7. The ionization coefficient, A, has droppec by
50%, but the plasma electron temperature has dropped by only 3%.

Finelly, we note in fig. 4.1.8 <that the normalized plzswa

.

T
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, Figure 4.1.6 Ionization Coefficient A, and C
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resistance, R, has risen by almost 100%. This is responsible for
the increase in arc-drop and the decrease in performance. Plasma
!( resistance increases in response to reflection because the loss
of plasma electron energy to the emitter is more important than
: the loss of ionization energy to the emitter. Ion reflection at
¢ the emitter increases the normalized plasma density there, and
consequently increases the normalized loss of plasma electron
, energy there. The basis of this can be seen from conservation of
electron energy ( eq. 2.2.22 ),
X
O S N N R S R R R R SRS Ay
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) ®
. = Jodiy A (1)
-( The ion energy loss term is generally small compared to the
b
electron energy loss term:
. 3 [ .
i T Yy = OGw 3 - @
p!
i Therefore, we take the the electron energy equation as:
: Y = /-4jl. (3
p (
N Since 1 is nearly constant ( because of the ionization kinetics
X
i
Ry
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Figure 4.1.8 Normalized Plasma Resistance

), the product de is nearly constant. Ion reflection decreases

j ( because the normalized plasma density increases ) and

> ¢ , .
® therefore increases arc-drop, Vd ( makes Vd a more negative

number.

If the equations are reformulated in such a way as to be valid
past the collector sheath failure point, then we can expect to
eventually see a decrease in arc-drop and a low current platesu

as the electron temperature approaches 1 ( the ignited plasma is

extinguished and the ionization source is surface emission ).
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This can be seen from eq.l. However, as we see, the collector

S failure occurs before t has dropped more than 5%. Consequently
we do not see any plateau or decrease in arc-drop as net current

density is decreased in the present calculationms.

| ®
4.2 Effects of Trapped Ioms

9 Figure 4.2.1 shows the effect of trapped ions on the C-V

g i
_ sl
) ¢ ~

a_

E\

N
; RN
. M / -
i . —-\ 'l.33) U_,= ,_95
. o A
N N IER
) %

f —— € 0'58 U :2_95

i. - \\x / s Y

< R .
' T X \‘ _
: W %095, U,=1.25 5
‘ -
0 e .

[=]
; %20 0,20 0.40 060 o L

. . . .6 .82 .Cl
Figure 4.2.1 C-V Diagram with Trapped Ions :'_f

!( characteristics. ( The amounts of trapped ions added in this '
:l‘ section are parameters as yet to be determined based of the
D¢
" - 4
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definition in section 3.3. ) Curve AHIJ is the C-V characteristic
for ftr = 0.10 At point A there cannot be any trapped ions since :-—*4
A

the back sheath height, Ax, is zero. Therefore the trapped C-V

merges into the non-trapped curve there. The actual amount of

VU BT WS

trapped ions on the ftr = 0.10 curve increases from zero at point T
A to the full 10% of a thermal distribution at point H where the

back sheath height, AX, is equal to the sheath height, X The

B
shift speed increases on AH from 1.95 to 3.00. This correspondes S

to what is seen in fig. 3.4.8 where AX < X The rise in shift

E'
speed has been limited to 3.00 as in fig. 3.4.8. This limit is A».'}
placed on the shift speed because a sheath with height of abour -'.”]
1.0 should not have a pre-sheath region capable of shifting the
entire distribution so far. In fact limiting the shift speed is
equivalent to increasing the cut-off speed for the ion -;;;i
distribution function. The arc-drop decreases as result of the
increase in u and the consequent increase in the net ion loss 1”};1
rate to the emitter. A "hump" can be seen on AH where the shift .j;;1

" because

speed hits 3.00. The arc-drop is lowest on this "hump
the shift speed is at its maximum of 3.00. Between points H and
I the back sheath height remains equal to the sheath height, Ax -
xB = Xs = 0. On this segment, u decreases to 1.25, therefore
increasing arc-drop. The drop in u, at Axs = 0 can be seen in
fig. 3.4.8 also. From point I to point J, the shift speed
remains constant at 1.25 and the ion loss rate decreases because
of reflection. The other trapped cases, ftr = 0.2, 0.3, ané 0.4

have not been connected because they hit the 3.00 maximum shift

speed much sooner than in the ftr = 0.1 case as can alsc be seen
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from fig. 3.4.8. Point J is the collector sheath f8ilure point.
Each of the ftr = 0.2, 0.3 and 0.4 curves begins 8% Axs =0 and v
ends at the collector sheath failure point. It should be noted .
that each of the trapped ion curves failes at a higher current -
than the last because the shift speed is lower. =
'
4.3 Effects of Surface Emission
'
In this section the effect of surface emission is discussed.
e .
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Figure 4.3.1 C-V Diagram with Surface Emission
and Trapped Ions R
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Figure 4.3.1 adds the effect of surface emission to fig. 4.2.1.
e On the :ftr = 0.10 curve, surface emission is added by multiplying -

the actual small amount of surface emission in case 1 by a factor

PUPTY Yy

of 100. This brings the surface emission up to the level in case .4

Fo

L 2, making it significant at J = 1.0 amp/cmz. It can be seen that

surface emission increases arc-drop; it does so in exactly the

same way as reflection or trapped ions do - it decreases the net

PO

. 'y loss rate of ions to the emitter. Also the collector sheath -
failure occurs at point K in exactly the same way as in section
y y

4.1.

o

4.4 Comparison with Experimental Work

® Figure 4.4.1 puts the isothermal results of fig. 4.3.1 next to e

the experimental results of fig. 1.1.2. The point of this

comparison is that the steepness of the C-V characteristic in the '.j:-."_-.i'

) PY experimental convertors can be explained by a decreasing ion loss ST

rate to the emitter. We have shown that all three of the o]
expected emitter sheath phenomena decrease the ion loss rate to !
the emitter. We cannot calculate the amount of trapped ions in a
collisionless sheath without knowledge of the collisional
processes. However, the experimental C-V suggests that if the

amount of trapped ions ( ftr ) increases from 0% at J = 14

amps/cm2 { the double sheath formation point ) to 30% at J = 2 . 'l‘;:.

amps/«:m2 ( the collector sheath failure at ftr =0.30 ) then the

steepness could result from trapped ions reducing the ion loss

rate to the emitter. Since these percentages are based on a
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Figure 4.4.1 Isothermal versus Experimental C-V Diagrams LoaT
[
t
eritter. Since these percentages are based on a thermal .
distribution of ions, they seem physically reasonzhle. Qiﬁ
; ’
Unfortunately, the collector sheath failure prevents us from -
going to the point ir the calculations where T drops enough to N
mzke surface emission the source of icns.
t
The experimental curve is nearly a constant .05 volts below ;
the isothermal result ( ftr = 0.10 ) except at hLigh current -
densities and at the "hump". Comparison of the curves at hLigh ;"
current density is not velid since neither the Schottky eflect PR
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effect nor recombination have been included. The Schottky effect
is important above 12 amps/cm2 in this case because the emitter
sheath is single electron repelling ( to the plasma ) and
therefore puts & strong electric field against the emitter with
the appropriate sign. Recombination is also potentielly
important because the plasma density scales with current density
and at high current densities the plasma density in the middle of
the convertor approaches the Saha density. The .05 wclt
difference may or may not be explained by a discrepency in the
assumed collector work function. At 800 K the collector emits
essentially nothing and therefore any change in the collecter
work function directly affects output voltage. If the collector
work function were in fact 1.65 vclts instead of 1.60 volts then
the isothermal result would lie nearly on top of the experimental
result. We have not adjusted the assumed collector work function
so as to illustrate the importance it and therefore the
importance cf the surface physics of the adsorbed cesium lzver.
The "hump" should not be taken as an expected experimental result
since it results from the interaction of the trapped ions with
the plasma-emitter sheath interface ( fig. 3.4.8 ). Instead it
should be taken as a second reason ( in addition to the cut-off
of the ijon distribution ) for further study of the matchirg

region between the collisionless sheath and the neutral plasma.
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’
CHAPTER 5: NON-ISOTHERMAL SOLUTIONS
5.1 The Implicit Computational Scheme
5.2 Non-Isothermal Results
’
The non-isothermal solution for the thermionic convertor is jﬂff
found by integrating ( through time ) the set of parabolic e
]

Partial Differential equations ( eqs. 2.1.14 and 2.1.15 ):

(M2 F =)t (4 )87+ re 2 (2)

B0 500 = § () 2T Ren) - w2 )

2 . (2) s
b Bl
n Nlei
These equations can be marched forward in time with an explicit )

scheme by computing all of the quantities on the right at

previous time step (Lawless). This, however, encounters a

stability 1limit on At which slows the numerical solution ]
excessively. The energy equation ( eq. 2 ) has a time scale iffi
inherently 500 times faster than the diffusion equation ( eq. 1) ?Zfi
because the mass ratio of electron to ions is approximately 500. is
The @tability limit for the faster energy equation: ,ﬁ;
N

...................................................
...................................................................
.....................................................
...................
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May = Yol (‘&x_)z (3)

where Ax is’'the space step size, telec is the characteristic

electron energy time scale and Ats is the stability limit time

tab
step size. Since the energy equation is the faster of the two in
the system, its stabilty limit controls the time step size for
the set of both equations. It can be seen that if 10 space steps
= 100t

are used, then At Since we want to find a steady

stab elec’

state solution, we need about 10t but t = 500t (

diff’ diff elec

approximately ), therefore we would need about 5 x 105 time steps

to achieve a steady state solution.

The implicit scheme does not have the stability 1limit and

therefore needs only 5 x 103 time steps to achieve the steady

state. Each time step requires about 10‘ floating point

operations ( flops ) whether or not the implicit scheme is used (

assuming 10 space steps ). For the explicit scheme this would

result in 5 x 109 flops while the implicit scheme would require

only 5 x 107 flops. In both cases the estimate of 10“ flops in

each time step assumes that the sheath calculations are a
negligible part of this. In fact the general sheath solution

requires approximately 108 flops in its full form. This would
result in 5 x 1015 flops. Therefore, running even the implicit
non-isothermal scheme requires that a sheath model be used.
Beéause of this, exploring thermionic convertor sheath effects

with the non-isothermal theory is difficult and we demonstrate

only the simple non-reflecting, non-trapped ion, non-surface

. -
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emission case in this chapter and compare it to the isothermal

i result.
» ®

5.1 The Implicit Computational Scheme

The diffusion equation can be written as _
an 2n ”m .
2, = do3t+tb=+ Cc+d (1) o
7t x 7x ) i
'
and the energy equation can be written as _ }
;%V'- ‘9‘7' ;7’ 2 S
%" C5nt 1"9x + 9T : ]
[
The quantities a through h are not constant but approximately so. _J
The explicit scheme is constructed as follows: f.if
;-n} i i L
_!'—_—‘— boand a n -zn.+ + b - hd J —'-"—'-41
= BT, iy d (3) .
b+ Ax? LAX . o
and j:._, .
) i md ot g ; o
—_ e T~ 2N+ + ks 3’!’;“'!' h (4) t
At Ax* 24X
where j is the time index and i is the space index. If a and e ..
are the only non-zero coefficients ( a and e dominate ), then the .
]

stability criteria are R

Ax?

At =25 *) i
]
and o
2
< ) 4X
4
We will not analyse the stability criteria in any more detail, e
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but simply develop the implicit scheme which has no stability
limits. The implicit scheme is constructed by taking the

variables at the advanced time step in the right sides of eqs. 1

and 2:
Jet J : -
n; -0, &0_2"-?:}“2: Y II'M
= q2——"—" 3 plu=liy , q¥ Q)
¥ a=—3 b P cn'+ 4
and
i ; ) .
-7 o ! )t
U/ G, - 20 T, At ot (8)
ot C A TR AL

These equations can be written as

.ﬁ _b_bt’ 3 Ja
l:a‘%;" Z 25 nm*[CA‘t“%“—b‘tQIJn" + qﬁ-gﬁ]
9)

= nj 8k _an
and
at Ay [ ;
[eficr £ BT [g- Ztpoi]os - o

(10)

= 7l At
7."—2~ hat.
which form tridiagonal matrices, that with the boundary

conditions, can be inverted in 3N operations where N is the

number of space steps.

5.2 Non-Isothermal Results

Figure 5.2.1 shows the electron temperature distribution

across the convertor gap for two cases: the non-isothermal case

Lt .
R T
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Figure 5.2.1 Non-Isothermal Electron Temperature

and the corresponding isothermal case at Axs = 0 and J 12

amps/cmz. The electron temperature remains close to 2 in the
non-isothermal case. Figure 5.2.2 is the corresponding
normalized plasma density. It can be seen that the plasma
density in the isothermal case corresponds closely with -the non-
isothermal case. The seemingly large difference in plasma
density in the middle of the gap not important since its
contribution to total plasma resistance is small and all other
effects of plasma density result from the plasma density at the

emitter and collector.
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Figure 5.2.2 Non-Isothermal Plasma Density
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

6.2 Recommendations for Further Work

6.1 Conclusions

Using only a simple isothermal model, the emitter sheath
effects of trapped ions, ion reflection and surface emissior ions
can explain the steep C-V characteristic of the thermicaic
convertor. Contrary to intuition, all three of these effects
increase arc-drop in the thermionic convertor because they
increase plasma density at the emitter and increase electron
energy loss to the emitter to a greater degree than they decrease
ionization energy loss. The low current density plateau observed
in thermionic convertors may well still be explained by suriface
erission, however we cannot demonstate this because of our

collector sheath failure.

6.2 Recommendations for Further Work
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Four things should be done to carry this work forward: 1) the

Y continuum equations should be generalized to include the
convection of momentum terms, udu/dx, to allow the collector

sheath failure to be overcome, 2) a collisional transition region

» between the neutral plasma and the collisionless sheath should be
developed to determine the appropriate cut-off for the plasma icn

distribution, 3) the collisional trapping mechanism should be

® explored, and 4) a fast comprehensive sheath model should be
developed and inserted into the implicit non-isothermal

computational scheme.
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APPENDIX A: ASYMTOTIC EXPANSIONS
A.l1 Particle Density in an Accelerating Potential ’
A.2 Particle Density in an Decelerating Potential
’
In this appendix we develop the asymptotic expansions for the
integrals -
0o ]
. - 73 du
¥ F(X] - ‘/7(’(11) o
:: ' A )} ’a’*X.l 1) -
3 and .. .,k;.
T . i
}' .. ~..'
wudu N
E()= / S el @) Sk
) X T
é( These are needed ( in chap. 3 ) to develop the Bohm criterion s
’
correctly and to demonstrate the necessity of a general ( as
[ opposed to a local ) matching condition. The expansion of these
3 integrals is non-trivial because the taylor expansions of .
o »
§ “« nd _u
j.- vurtx vui~-X
L" are not uniformly valid at u = 0 and u = VX respectively; A
¢ o
;',: therefore we cannot use the simple method of expanding the _:-:::-f'
E : ‘:':
' v
b .
L.‘ e SR R R e S S T A S S R e e T At e e ARt T A R FPRE I SR S N
R o e e e N L T LN
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integrand.

A.1 Particle’'Density in an Accelerating Potential

The expansion of this integral,

udu (1)
FX) = //‘( )\/_T

is done by splitting the domain of integration at a small fixed
non-zero point, k. On the lower part of the domain the function,
f(u), is expanded into a taylor series ( for the distribution
functions of interest this is always possible ) and on the upper

part of the domain, u/v’(u2 + X) is expanded ( uniformly because k

is greater than zero ):

k 00
Fx) _—./{'( ) udu udu
/ Y rralki / feu e

= *( _udu
/ /;,;V__,

(2)

The expansion of the upper part is complete and we need to
determine the asymptotic expansion of the lower part. We will
find the asymptotic expansions of the infinite series of

integrands and regroup the terms by order in X and then show that

.- '.“-;"1

L _J .
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-

. - , Cor e

ot TP

P PP
., .




-3- APPENDIX A
the result is independent of k as it should be. Finally, we will
take the limit as k goes to zero and we will then have the

result.

The asymptotic expansions of the infinite series can be found

recursively starting with the first four integrals:
&

aldQ? - _ Vo ]
= k- X +21k—x+ O(x)/

l
o VU?X

rh ? f utdu P

x

w2t Fhxex(4- k) 06)

T

F ol

".( J!.i‘ig- = (3)

N
UEHX f}(-k oO(xX ),

‘“\7"..

‘ Tdu _ L4
/Lf/t-rx -’.—;'-,";,x + O(Ix)

The remainder of the terms are found by integration by parts:

Vk+X

f (v* X)%Jv ..LJ[T"k
W

- x ""’/(V z)q_r%_(a)

mz5

which results in

k i
fa'"a'u _ k" L (5)

Adding and regrouping these terms produces:
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» k
: f Feup-2de . — Z'f £ [ w5
. ® ° au*fx neo N om—x—v +',[fm][/—z‘ﬁ=x+0az)}1 (6) ;

. 2 oy, .t a~t ,
= Z 5P - xhm [+ Elofe-1 2]

') "
+ '\c(")[l‘—i-lf-_lnl.‘- xX(L - ank)]
Z 1 (3 Z )
* J? du— 2 [t d )
- cu)u—..J-F(u)_E_+ 0 (X
Jo k 2 k u'- ]
s0 "
— o
= f, fuodu+ X Torwy] + xnx [4——4“)]
‘ ) o (8)
f_(_{ﬁ) + /L lnzk) 2 o '
+X-[ ey I(O)(ﬁ"-z— -/#“)Z{—I’Ja-z%)—k-j]
302 k asz M 2m) _
+O(x"/.
¢ Now we demonstrate that this result is independent of k. The '
only term in eq. 8 containing k is the X term; therefore we take
; the derivative of this term with respect to k:
¢ .

i_ 4:(0) u)o _L_,_n—zﬁ _ Lol _L _ s ) "l
AT +f()<q ;_) fk'rw)zu‘du ,,Z,;_Ln(—fqﬁ')

= [iw- 5@ 1 -0
T

nzso

Since f(u) is assumed to be expandable as a taylor series on

(0,k) the expression in brackets is zero.




-5- APPENDIX A
We now take the limit of eq. 8 as k goes to zero. Through
integration by parts i
) Y * - '
£°0) ., y N ON ] _
t (0 _nZL)_/ Ly -5 L YE" .»
2L +f (0)( il 2 ‘f(a)zu‘ u ”Zz' n! a2tn) R
Y (10) ;
= £9 o©ow
[ L2 2 [ ¥ whouda
(] /
’
therefore we have the final result:
b0
wdu bo My
[4 =
/o‘fu)\/ua«x’ /fwa’“ - X [&/")] |
o »

1))
+ 2inx ﬁ—{ﬂ)/
9 (11)

£ p i
+ £ C_ 1 [ 2% d
X [ 49 2 /; ) ulnz“o}“] S

2 >
e o
+ (™).
’
The x1/2 term and the Xlnx term in eq.11 depend only on the
distribution function zero. If the distribution function has its
low energy tail cut off ( as in chap. 3 ), then the xl/2 and x1lnx )

terms are zero and the X term can be reduced ( by integration by

parts ) to:

/ o J s0
Flu) AL = / feurdu '
R Cac Ueut 12 s

|
~
~
¥
3
8
:l.
N

...............................
..................

--------------




»
-6~ APPENDIX A
A.2 Particle Density in an Decelerating Potential
The expansion of this integral, ’
a’a 5
Feu) = / Feu) AL, @ ;
V=’ x
is done by splitting the domain of integration at a small fixed ’

¢ non-zero point, k. On the lower part of the domain the function,

] f(u), is expanded into a taylor series ( for the distribution

functions of interest this is always possible ) and on the upper

part of the domain, u/v’(u2 - x) is expanded ( uniformly because k

is greater than zero ):

FO) = / 71'(«) “‘{“ / ,z,‘,} u/“ e

X u

e k r
—_ Z.f(néo)l'_‘ ud'bL
: VX C n=o N IONEX (2) i
. ® P
' /fza} I+ LL x+ O(x‘)j
k 1! 2u? .
¢ ’
The expansion of the upper part is complete and we need to -
determine the asymptotic expansion of the lower part. We will Ei;
¢ find the asymptotic expansions of the infinite series of !.
integrands and regroup the terms by order in X and then show that :it{
the result is independent of k as it should be. Finally, we will ig
{ take the limit as k goes to zero and we will then have the é.

result.
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The asymptotic expansions of the infinite series can be found

b e recursively starting with the first four integrals: - -
; f‘t d“ .
L “ = - X 2 5
% wlex = kT g r o, :
. k ) 4:
f wde _ e
= k° _ alnx 2k .
RX 7 T A x4 -)0n)
k
f udu _ . L (s>
gz 3 * 52_ + o)
k
gV g HE L o (XX ). o
The remainder of the terms are found by integration by parts:
k'-x e -
o) By = LyETE e X[ )™ “)
*X) v = (v x) a"lf m25 =
o 0 ‘
which results in )
k -2
,/“ma/“ = L k400 ©
T Va=xT om g(m2)
L Adding and regrouping these terms produces:
. | ” p
- _/ Fl tdh  _ > o) f u™'du
% e VA no M @ Vu-x ©
P .
E + j 1C((,t){]-p- -’_L,z“’-(,_x +0(19}
- k
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»®°
= £1°0) [ k™ k - X
. ,,Z=;_ n! L n+ cnl)l ¥ {(o)(k E,Tc)

,:t: ""FL,C)[H’ _ xlnx _x (.L ank)] 7
+ J-Ftu)du. + ‘ks ‘c‘“’zw du + p (%)
/S

L?w;du + xlnx ["{—‘;{3)] ®
z -Flo) ‘F(D()(l '"zk) +Z_:,_Qk -})-F(u)lM .

Now we demonstrate that this result is independent of k. The
only term in eq. 8 containing k is the X term; therefore we take

the derivative of this term with respect to k:

c%c[ -ék(i) B %)#* )'r%f) Z f n{ )2(u ) J bz J‘(J

n=-2

(9

= [2*‘_5)_@"41»]: 0.

h=0

Since f(u) is assumed to be expandable as a taylor series on

(0,k) the expression in brackets is zero.

P IREA
L e
A’ a’arg -

We now take the limit of eq. 8 as k goes to zero. Through

integration by parts

-"\
-
..
B
o

................
................................................

..............................
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Ce ¢)
| [55 - (4-1a22) *f a ‘,’ L J g
Ec n2 n 2yt (10)
. _ "rn) _L J_ .9”
= [.. (») 4t 3 fo,c (u)u/nzuda]
. i therefore we have the final result:
/ fwi “”la / fryda +alnx [ “)]
e <

+ X -1 (o) +Jf1" (Wulnza a’u] a1

+ oY)

The xlnx term in eq.l1 depends only on the distribution function
zero. If the distribution function has its low energy tail cut
off ( as in chap. 3 ), ther the XlnX term is zero and the X term

can be reduced ( by integration by parts ) to:

oo
du v
-ft ) ¢ = f
f Ry T )t an
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APPENDIX B: ISOTHERMAL PROGRAMS

B.1 ISOTHER: Computes the Isothermal Solutijon
B.2 SHIFT: Computes the General Sheath Solution
!" B.3 CAL3: Computes the Sheath Solution given Ushift

and Computed the Sheath Solution for no
Trapped and no Surface Emission
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B.1 ISOTHER: Computes the Isothermal Solution

ISOTHER: PROC OPTIONS(MAIN);
DCL (T,DELT,X,DELX,FT,FX,DF1DT,DF1DX,DF2DT,DF2DX,
° DELTIN,DELXIN,ERSH,NEWSH, DUM,
JR,TE,PHIW,NCS,NCSP,NPO, SURMULT,
B1,DBDT,CHITEM, UZERO, SMR, LOSSION,
CCHI,ACHI,OCHI,A1A0,TAU,RTAU, TAUIN,NO,N1,
DELCHII,DELCHIF,DELCHIS,VD,VOUT,JJR,RATIO,
TIN,XIN,BOTEM, BITEM, QTEM, QCTEM, RTEM, ATEM, CTEM, ABTEM,
AO,A1,VION,SMALLJ,DELCHI ,DELTAT,DELTAX,
ERROR1,ERROR2) FLOAT BIN(31);
DCL (FLAGCOL,ISOL,IPLASMA,IPLATE, ISINGLE, ISPEED,
ISUR) EXT FIXED BIN(31);
DCL (I,J,ICASE,ICASEST,INERTIA,IDELCHI,IONIZA,IA1A0) FIXED BIN(31);
DCL (CUTOFF, TRAPPED, SURFACE ,UIN, VIONC,UCSHIFT,CCUT,
MUI,MUEA,KN,LAMDAR) EXT FLOAT BIN(31);
| DCL (ABINV,A,RQ,Q,BETAO,BETA1,SHIFT,INVB1) EXT ENTRY
RETURNS (FLOAT BIN(31) );
CCUT=CUTOFF;
SMR=1./492.2;
TPLASMA=0; IPLATE=0;
| SURMULT=1. ;
@ GET FILE(ISODAT) DATA;
ICASE=ICASEST-1;
LOOP:DO DELCHI=DELCHII TO DELCHIF BY DELCHIS;
ICASE=ICASE+1;

SHIFTLP:DO J=1 TO 3;
IF(FLAGCOL=0) THEN BEGIN;

/* SET INITIAL ITERANTS IF FIRST CASE */
IF (ICASE=ICASEST) THEN BEGIN;
=TIN;X=XIN; Sl
) € TAU=TAUIN; '
END; o]
FT=F1(T,X) ;FX=F2(T,X); M
CON:DO I= 1 TO 20; ]
DELTIN=.05; R
' DELXIN=.05; :
) € DELT=(EXP(DELTIN)-1.)*T;
DELX=(EXP(DELXIN)-1.)*X;
DF1DT=(F1(T+DELT,X)-FT)/DELTIN;
DF1DX=(F1(T,X+DELX)-FT)/DELXIN;
DF2DT=(F2(T+DELT,X)-FX)/DELTIN;
. DF2DX=(F2(T,X+DELX)-FX)/DELXIN;
) ( DELTAT=(FX*DF1DX-FT*DF2DX)/ (DF1DT*DF 2DX-DF 1DX**DF2DT) ;
‘ DELTAX=(FT**DF2DT-FX**DF1DT)/ (DF1DT*DF2DX-DF 1DX**DF 2DT);
T=EXP (DELTAT)*T;

.........
..........
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X=EXP(DELTAX)*X;
FT=F1(T,X);
FX=F2(T,X);
IF(ABS(FT)<=ERROR1 & ABS(FX)<=ERROR2) THEN GO TO FIN;
END CON;
PUT FILE(ISOPRT) SKIP LIST('FAILED TO CONVERGE');
PUT FILE(ISOPRT) SKIP DATA;
STOP;
END;
ELSE BEGIN;
T=0.0;
/* SET INITIAL ITERANTS IF FIRST CASE */
IF (ICASE=ICASEST) THEN BEGIN;
X=XIN;
TAU=TAUIN;
END;
FX=F2(T,X);
CON2:DO I= 1 TO 20;
DELXIN=.05;
DELX=(EXP(DELXIN)-1.)%*X;
DF2DX=(F2(T,X+DELX)-FX)/DELXIN;
DELTAX=-FX/DF2DX;
=X*EXP (DELTAX);
FX=F2(T,X);
IF(ABS(FX)<=ERROR2) THEN GO TO FIN;
END CON2;
PUT FILE(ISOPRT) SKIP LIST('FAILED TO CONVERGE');
PUT FILE(ISOPRT) SKIP DATA;
STOP;
END;
FIN:

IF(FLAGCOL-=0) THEN BEGIN;

T=.001;

B1TEM=-ATEM**COS (ATEM+CTEM) /SIN(ATEM+CTEM);
IF(FLAGCOL-=2) THEN BEGIN;

B1=BETA1 (TAU,T,QCTEM)-B1TEM;

CON3:DO I =1 TO 20;
DBDT=(BETA1(TAU,T+DELT,QCTEM)-B1TEM-B1)/DELT;
DELTAT=-B1/DBDT;

T=T+DELTAT;
B1=BETA1(TAU,T,QCTEM)-BITEM;
IF(ABS(B1)<=ERROR2) THEN GO TO FIN1;

END CON3;

PUT FILE(ISOPRT) LIST('B1 LOOP FAILED TO CONVERGE');

STOP;

END;

ELSE BEGIN;

DUM=INVB1(TAU,BI1TEM);

END;

END;

FIN1:

NEWSH=SHIFT(TAU,X,CHITEM,TRAPPED,SURFACE);
ERSH=NEWSH-UIN;

............

........
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UIN,UZERO=NEWSH;
Py END SHIFTLP; )

PUT FJLE(ISOPRT) SKIP DATA;
PUT FILE(I1SOPLOT) SKIP(2) EDIT('DELCHI(',ICASE,
'y=',DELCHI,',")
(A(7),F(2),A(2),E(13,5),A(1)); ’
° PUT FILE(ISOPLOT) EDIT('R(',ICASE, )
")=',RTEM,',")
(A(2),F(2),A(2),E(13,5),A(1));
PUT FILE(ISOPLOT) EDIT('MACHE(',ICASE,
")="',qQTEM,"',")
(A(6),F(2),A(2),E(13,5),A(1));
o PUT FILE(ISOPLOT) SKIP EDIT('BETAO(',ICASE, )
")="',BOTEM,"',")
(A(6),F(2),A(2),E(13,5),A(1));
PUT FILE(ISOPLOT) EDIT('BETA1(',ICASE,
")=",BITEM,",")
(A(6),F(2),A(2),E(13,5),A(1));
, PUT FILE(ISOPLOT) EDIT('A(',ICASE, »
' ')=',ATEM,',")
(A(2),F(2),A(2),E(13,5),A(1));
PUT FILE(ISOPLOT) SKIP EDIT('SMALLJ(',ICASE,
')="',SMALLJ,',")
(A(7),F(2),A(2),E(13,5),A(1));
;. PUT FILE(ISOPLOT) EDIT('ECHI(',ICASE,
=%
(A(5),F(2),A(2),E(13,5),A(1));
PUT FILE(ISOPLOT) EDIT('TAU(',ICASE, LT
' )=' 9TAU) ' ’ ' ) -. .
(A(4),F(2),A(2),E(13,5),A(1)); o]
‘° VD=-2%*(TAU-1.)/SMALLJ; » "j
| IF(IONIZA~=0) THEN VD=VD-LOSSION;
PUT FILE(ISOPLOT) SKIP EDIT('VD(',ICASE, .
=',vD,", ") ’ -
(A(3),F(2),A(2),E(13,5),A(1));
JIJR=SMALLJ*EXP(-X-DELCHI);
) PUT FILE(ISOPLOT) EDIT('JJR(',ICASE,
" )=",JJR,", ") 1
(A(4),F(2),A(2),E(13,5),A(1));
VOUT=X+DELCHI+VD;
IF(T<0.) THEN VOUT=VOUT+T;
PUT FILE(ISOPLOT) EDIT('VOUT(',ICASE,
| ")=',vouT,',")
) (A(5),F(2),A(2),E(13,5),A(1));
- ACHI=TAU*LOG (SIN (ATEM+CTEM)/SIN(CTEM));
PUT FILE(ISOPLOT) SKIP EDIT('ACHI(',ICASE,
')=',ACHI,',")
‘ (A(5),F(2),A(2),E(13,5),A(1));
, OCHI=SMALLJ*RTEM; ® ‘
p{ PUT FILE(ISOPLOT) EDIT('OCHI(',ICASE, c
')='v0CHIs'a’) .'.'
: (A(5),F(2),A(2),E(13,5),A(1)); St

’
T e e
At ala
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PUT FILE(ISOPLOT) EDIT('CCHI(',ICASE,
')=' )T)' b ')

& (A(5),F(2),A(2),E(13,5),A(1)); )
PUT FILE(1SOPLOT) SKIP EDIT('AO(',ICASE,
)=',40,"',")
(A(3),F(2),A(2),E(13,5),A(1));
PUT FILE(ISOPLOT) EDIT('A1(',ICASE,
')=')A1)"')

| @ (A(3),F(2),A(2),E(13,5),A(1));
PUT FILE(ISOPLOT) EDIT('C(',ICASE,
")=",CTEM,",")
(A(2),F(2),A(2),E(13,5),A(1));
PUT FILE(ISOPLOT) SKIP EDIT('VAVE(',ICASE,
")=",VION,',")

yo—

K_O (A(5),F(2),A(2),E(13,5),A(1)); )
: PUT FILE(ISOPLOT) EDIT('UZERO(',ICASE,

s ")=",UZERO,",")

f (A(6),F(2),A(2),E(13,5),A(1));

PUT FILE(ISOPLOT) EDIT('CUTOFF(',ICASE,

'y="',CUTOFF,"',")

é.f (A(7),F(2),A(2),E(13,5),A(1));

PUT FILE(ISOPLOT) SKIP EDIT('TRAPPED(',ICASE,

'y=",TRAPPED,',")

. (A(8),F(2),A(2),E(13,5),A(1));

‘ PUT FILE(ISOPLOT) EDIT('SURFACE(',ICASE,
'y="',SURFACE,',") _
(A(B),F(2),A(2),E(13,5),A(1)); s
PUT FILE(ISOPLOT) EDIT('ISOL(',ICASE,
")=",180L,',")
(A(5),F(2),A(2),F(2),A(1));

PUT FILE(ISOPLOT) EDIT('IONIZA(',ICASE,
')=",I0NIZA,",") e
(A(7),F(2),A(2),F(2),A01)); '
NO=1./QTEM;

PUT FILE(I?OPLOT) SKIP EDIT('NO(',ICASE,

')=' sNO" 13 ) -- 4'.
(A(7),F(2),A(2),E(13,5),A(1)); L
PUT FILE(ISOPLOT) EDIT('VIONC(',ICASE, B,
")=',vVIONG, ', ")

(A(6),F(2),A(2),E(13,5),A(1)); '
PUT FILE(ISOPLOT) EDIT('UCSHIFT(',ICASE, i
'y=",UCSHIFT,',") t ]
(A(8),F(2),A(2),E(13,5),A(1)); L
N1=1./QCTEM;

PUT FILEgISOPLOT) SKIP EDIT('N1(',ICASE, .
)=",N1,",")

(A(7),F(2),A(2),E(13,5),A(1)); ‘
PUT FILE(ISOPLOT) EDIT('ERSH(',ICASE, e
')="ERSH,"') ' N
(A(5),F(2),A(2),E(13,5),A(1)); G
PUT FILE(ISOPLOT) SKIP EDIT('FLAGCOL(',ICASE,

'y=" ,FLAGCOL,',") '

END LOOP;
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! RETURN;
F1:PROC(CX,XX) RETURNS(FLOAT BIN(31)); ‘
® DCL (CX,XX,F1X) FLOAT BIN(31); p
IF(IDELCHI=0) THEN CHITEM=0.;
ELSE CHITEM=DELCHI;
QTEM=Q(TAU,XX,CHITEM, SMALLJ,VION,UZERO);

TE=1500. ;PHIW=1.60;JR=20.;
! JIR=SMALLJ*EXP(-XX-CHITEM);
[ NCS=6.44E+415%(1500./TE);
NCSP=NCS/2./(1.+2.*EXP((3.89-PHIW)*11600./TE));
NPO= (JJR*JR)*2.925E+11/QTEM*(1500./TE);
SURFACE=NCSP/NP0*2.*EXP(CHITEM);

[ 7 SURFACE=SURFACE*SURMULT;

IF (ISUR=0) THEN SURFACE=0.;

% /* SURFACE EMISSION */
®

BOTEM=BETAO (TAU,XX,QTEM,VION);

{ QCTEM=SQRT(2./3.14159)*EXP(-CX/TAU)/C1(CX/TAU);

¢ IF(FLAGCOL=0) THEN BEGIN;

¢ BITEM=BETA1(TAU,CX,QCTEM);

! END;

) ATEM=A(BOTEM,B1TEM,QTEM,CTEM) ;

3 TAU=ABINV (ATEM) ;
AO=SQRT(3.1415927/2. )*QTEM* (. /SMALL3-1.)*EXP (XX/TAU);
IF(CX/TAU<=0.) THEN
Al=1.; -
ELSE »
Al=1./C1(CX/TAU);

A1A0=A1/A0;

IF (IA1A0=0) THEN AlA0=1.;

F1X=CX-XX-TAU*LOG (SIN (ATEM+CTEM) /SIN(CTEM))

-TAU*LOG(A1A0)-TAU*LOG(1./SMALLI=1.); :

RETURN (F1X); »
END F1;
F2:PROC(CX,XX) RETURNS(FLOAT BIN(31));

DCL (CX,XX,RQTEM,F2X) FLOAT BIN(31);

IF( IDELCHI=0) THEN CHITEM=0.;

ELSE CHITEM=DELCHI;

QTEM=Q(TAU,XX,CHITEM, SMALLJ,VION,UZERO) ; »

/* SURFACE EMISSION */

TE=1500. ; PHIW=1.60;JR=20. ;

JIR=SMALLJ*EXP (-XX-CHITEM) ;

NCS=6.44E+15%(1500. /TE); ‘
NCSP=NCS/2./(1.+2.*EXP((3.89-PHIW)*11600., 3)); L
NPO= (JJR*JR)*2.925E+11/QTEM#*(1500./TE); o
SURFACE=NCSP/NP0*2 . *EXP (CHITEM) ; R
SURFACE=SURFACE*SURMULT; SR
IF (ISUR=0) THEN SURFACE=0.; R

BOTEM=BETAO (TAU,XX,QTEM,VION) ; »
QCTEM=SQRT(2./3.14159)*EXP(-CX/TAU)/C1(CX/TAL); Lol
IF(FLAGCOL=0) THEN BEGIN; ;:;f

. R I B R . TSt ST TR SR P A SN
l\t—"\'\""\"L'-‘k:‘L‘MP'LL'_L'L >
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B1TEM=BETA1 (TAU,CX,QCTEM);
END; ' .
|. ATEM=A(BOTEM, BITEM, QTEM, CTFM) ; -

TAU=ABINV(ATEM); e
\ A0=SQRT(3.1415927/2.)*QTEM*(1./SMALLJ~1.)*EXP(XX/TAU);
4 RQTEM=RQ(ATEM,CTEM) ;
g RTEM=RATIO*RQTEM*QTEM/SMALLJ*TAU* RS
1 &4./SQRT(2.%3.1415927); AR
® IF(CX/TAU<=0.) THEN LT
Al=1.; ®
! ELSE
Al=1./C1(CX/TAU);
A1A0=A1/A0; S
IF(IA1A0=0) THEN AlAO=1.; "
F2X= 2.%*(1.-TAU)/SMALLJ + SMALLJ*RTEM 3
+TAU*LOG (SIN(ATEM+CTEM) /SIN(CTEM) )+XX-CX; e |
IF(INERTIA~=0) THEN BEGIN; j
F2X=F2X '
~TAUSQTEM**2/2 .% (1. - (SIN(CTEM) /SIN(ATEM+CTEM) )*+%2);
END; :
IF(IONIZA~=0) THEN BEGIN; : 4
LOSSION=SMR* (VION+VIONC*SIN (ATEM+CTEM) /SIN(CTEM))/ ® )
QTEM*3.896/8.609E-05/TE; B
F2X=F2X-LOSSION; R
END;
RETURN(F2X) ; ; 5
END F2; i
C1:PROC(XX) RETURNS(FLOAT BIN(31)); ® 4
DCL (XX,C1X) FLOAT BIN(31); ]
IF(XX<=0.) THEN CiX=1.; R
ELSE C1X=1.+ERF(SQRT(XX)); e
RETURN(C1X) ; B
END C1; o
C2:PROC(XX) RETURNS(FLOAT BIN(31)); » J
DCL (XX,C2X) FLOAT BIN(31); -
C2X=EXP(XX)* (1. -ERF (SQRT(XX)));
RETURN(C2X) ; R

END C2; R

END ISOTHER; ' :
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: B.2 SHIFT: Computes the General Sheath Solution

SHIFT:PROC(CE,PHIM,R, TRAPPED, SURFACE) RETURNS (FLOAT BIN(31)); L
DCL(BETA, BETATEM,CI,SCI,CE,R,UR, Sl
NEB,NPLASMA, LR

c1,C2,C5,C6,PHIM, L

PLASMA, SURFACE,

CHI,

URL,URH,MURM, URM,

TEM1,TEM2 ,TEM3, TEM4 , TEM5 , TEM6 , TEM7)

FLOAT BIN(31); -
DCL( I,ICASE) FIXED BIN(31); »
DCL(FIB,FID,FII)

EXT ENTRY(FLOAT BIN(31),FLOAT BIN(31),

FLOAT BIN(31),FLOAT BIN(31),FLOAT BIN(31))

RETURNS ( FLOAT BIN(31));

DCL (FEB,FI1J) EXT ENTRY(FLOAT BIN(31),FLOAT BIN(31), .
FLOAT BIN(31),FLOAT BIN(31)) »
RETURNS ( FLOAT BIN(31) ); -

DCL (TRAPPED) FLOAT BIN(31);

DCL (M) FIXED BIN(31) EXT;

M=20; L
CI=1.;BETATEM=.1; s
SCI=SQRT(CI); !

BETA=BETATEM*SQRT(CE/2.);

URH=3. ;URL=-3.; L]

LOOPUR:DO I = 1 TO 10; ' e
URM= (URL+URH) /2. ; DRI
MURM=MININT (URM); REDERE
IF (MURM<=-0.00000001) THEN URL=URM; ’

ELSE URH=URM;

END LOOPUR;

FINUR:UR=URM*SQRT(2./CE);

RETURN (UR) ;

MININT:PROC(URTEM) RETURNS( FLOAT BIN(31)); ’
DCL (URTEM,FNETMIN,TEMP) FLOAT BIN(31); :
DCL J FIXED BIN(31);

CHI=PHIM;NEB=(EA(URTEM,R)-K3(CHI))/K&(CHI);

CHI=0. ;FNETMIN=EA(URTEM,R)-K3 (CHI)-K& (CHI)*NEB;

LOOP:DO J=1 TO 25;

CHI=J*PHIM/25.; [ ]
TEMP=EA (URTEM,R)-K3(CHI)-K&4 (CHI)*NEB; o
FNETMIN=MIN(FNETMIN,TEMP);

END LOOP;

LOOP2:DO J=1 TO 10; e
CHI=J*PHIM/250.; N
TEMP=EA (URTEM,R)-K3(CHI)-K4 (CHI)*NEB; »
FNETMIN=MIN (FNETMIN, TEMP); o

END LOOP2; e

...............
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RETURN(FNETMIN) ;
END MININT;

EA:PROC(TUZERO,TR) RETURNS (FLOAT BIN(31));
DCL(TUZERO, TR, TEMEA, TPHIM, TPHIZ,SQZM, SQPI,
10XZM, IZMXX, I0M,
SQZX, 12X1,10X,1ZMXI,SQXZM,121,1ZMI)
FLOAT BIN(31);
TPHIM=PHIM; TPHIZ=(PHIM+TR) ;
IF (TPHIZ>=TPHIM) THEN BEGIN;

SQZM=SQRT(TPHIZ-TPHIM);
SQZX=SQRT(TPHIZ-CHI);

IZMI=(1.-ERF(SQZM))*SQRT(3.1415926)/2.;
I0M=ERF (SQRT(TPHIM))*SQRT(3.1415926)/2.;
IZXI=(1.-ERF(SQZX))*SQRT(3.1413926)/2.;
I0OX=ERF(SQRT(CHI))*SQRT(3.1415926)/2.;
I1ZI=(1.-ERF(SQRT(TPHIM)))*SQRT(3.1415926)/2.;
I1ZMXI=(1.-ERF(SQRT(TPHIZ-TPHIM+CHI)))*SQRT(3.1415926)/2.;
PLASMA=(SQRT(3.1415926)-SURFACE*1ZMI)/
(FID(BETA/SCI,1000000.,1.,TUZERO,0.) +
FID(BETA/SCI1,SQZM,1.,TUZERO,0.) );
TEMEA=2 .*PLASMA*
( FII(BETA/SCI,1000000.,1.,TUZERO,
SQRT(CHI)) -
FII(BETA/SC1,1000000.,1.,TUCZERO,
0.) +
FII(BETA/SCI,SQZM,1.,TUZERO,
SQRT(CHI)) -
FII(BETA/SCI,SQZM,1.,TUZERO,
0.))
+ TRAPPED*
( 2.*EXP(CHI)*10X-2.*SQRT(CHI) )
+SURFACE™*
( EXP(TPHIM-TPHIZ)*SQRT(TPHIZ-TPHIM+CHI)
+EXP(CHI)*IZMX1I
-SQRT(TPHIZ-TPHIM)*EXP(TPHIM-TPHIZ)
=1ZMI );

TEMEA=TEMEA/SQRT(3.1415926);
END;
ELSE BEGIN;
SQPI=SQRT(3.1415926);
PLASMA=SQPI*(1.-SURFACE/2.)/
FID(BETA/SCI,1000000.,1.,TUZERO,0.);
TEMEA=
2.*PLASMA* (FI1(BETA/SCI,1000000.,1.,TUZERO,
SQRT(CHI))-
FII1(BETA/SCI,1000000.,1.,TUZERO,
0.) )/SQPI;
IF(CHI<=TPHIM-TPHIZ) THEN BEGIN;
10X=ERF(SQRT(CHI))*SQPI/2.;
TEMEA=TEMEA + SURFACE*

> —w m— - — v
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(SQPI/2.*(EXP(CHI)-1.)
+EXP (CHI )*10X~SQRT(CHI))/SQPI;
END;
ELSE BEGIN;
SQXZM=SQRT (CHI+TPHIZ-TPHIM);
10XZM=SQPI*ERF (SQX2ZM)/2.;
IZMXI=(1.-ERF (SQRT(TPHIZ-TPHIM+CHI)))*SQPI/2.;
1ZMXX=( ERF(SQRT(CHI))
-ERF (SQRT(TPHIZ-TPHIM+CHI)) )*SQPI/2.;
TEMEA=TEMEA + SURFACE*

(SQRT (TPHIZ-TPHIM+CHI )*EXP (TPHIM-TPHIZ)*2.
+EXP (CHI )*12MXI
-SQPI/2.-SQRT (CHI )+EXP (CHI )*I1ZMXX)/SQPI

+TRAPPED* (2 .#*EXP(CHI)*I0XZM -
2.*EXP (TPHIM-TPHIZ)*SQX2M)/SQPI;
END;

END;
RETURN(TEMEA*CI);
END EA;

K3:PROC(CHITEM) RETURNS( FLOAT BIN(31));
DCL(CHITEM) FLOAT BIN(31);
TEM1=SQRT(3.1415926)/2.;
TEM3=SQRT(3.1415926)/2 .*ERF(SQRT(PHIM/CE));

C1=(TEMI1+TEM3)/(TEM1);

C5= (1.-EXP(-CHITEM/CE))+ EXP(-CHITEM/CE)*(
2%F11(0.,SQRT((PHIM-CHITEM)/CE),1.,0.,SQRT(CHITEM/CE))-
2%F11(0.,SQRT((PHIM-CHITEM)/CE),1.,0.,0.; )*

2./SQRT(3.1415926)+
2*FII(0.,SQRT(CHITEM/CE),1.,0.,0.)*2. /SQRT(3.1415926);

RETURN(C5*CE/C1);
END K3;

K4 :PROC(CHITEM) RETURNS( FLOAT BIN(31));
DCL(CHITEM) FLOAT BIN(31);
TEM1=SQRT(3.1415926)/2.;
TEM2=TEM1;
TEM3=SQRT(3.1415926)/2.*ERF(SQRT(PHIM/CE));
TEM4=FID(0.,1000000.,1.,0.,SQRT(PHIM));
TEM6=2*FI11(0.,1000000.,1.,0.,SQRT(PHIM));
TEM7=2*FII(0.,1000000.,1.,0.,SQRT(PHIM-CHITEM));

C1=(TEM1+TEM3)/(TEM1);

C2=TEM&/TEMZ;

C5= (1.-EXP(-CHITEM/CE))+ EXP(~CHITEM/CE)*(
2*FI1(0.,SQRT((PHIM-CHITEM)/CE),.,0.,SQRT(CHITEM/CE))-
2*FI1(0.,SQRT((PHIM-CHITEY)/CE),1.,0.,0.) )*

2./SQRT(3.1415926)+
2*FII(0.,SQRT(CHITEM/CE),1.,0.,0.)*%2./SQRT(3.1415926);

C6=(TEM6-TEM7)/TEM2;

-
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. RETURN(C6-C2*C5*CE/C1);
END Ké&;
END SHIFT; -
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B.3 CAL3: Computes the Sheath Solution given Ushift '~: .
) and Computed the Sheath Solution for no |
tﬁ Trapped and no Surface Emission ’ R

By
'

DCL(BETA,BETATEM,CI1,SCI,CE,ALPH,BET,R,UR,
NEB,NEP,BNEB,BJNET,JNET,VAVE,
¢i,Cc2,C3,C4,C5,C6,H,PHIM,ECHI,

: FO,F1,F2,URO,UR1,UR2,

K1,K2,K3,Ké,

?o

’ °® CAL3:PROC(ECHI,PHIZ,CE,CI,BETATEM,MR,ERROR,UZERO, BNEB, BJNET,VAVE) ; -

JION, JEE .RZ, -
JEP,PLASMA,
! DELX,DELTAX, X, HX, DHDX,
¢ UP,MR, ATEM,
ERROR, PHIZ ,TEM1,
TEM2, TEM3, TEM4 , TEMS , TEM6 , TEM7 , UZERO)
FLOAT BIN(31);
DCL(FIB,FID,FII) ’
EXT ENTRY(FLOAT BIN(31),FLOAT BIN(31),
FLOAT BIN(31),FLOAT BIN(31),FLOAT BIN(31))
RETURNS( FLOAT BIN(31));
DCL (FEB,FIJ) EXT ENTRY(FLOAT BIN(31),FLOAT BIN(31),
FLOAT BIN(31),FLOAT BIN(31))
RETURNS( FLOAT BIN(31) );
DCL(I,J) FIXED BIN(31);
DCL(M, 1SOL. ISINGLE , ISPEED, IPLASMA, IPLATE) FIXED BIN(31) EXT;
DCL (TRAPPED,SURFACE, INTERR,NENO,UIN) FLOAT BIN(31) EXT;
/*****************************************************/

/* */ ..

n-!__v AR

/* EXTERNAL VARIABLE INPUTS */ ’

/* ISOL = 0 FOR CUTOFF ION DISTRIBUTION BOHM */ e

/* = 1 SQRT(CHI) MATCHING */ Sy

/% ISINGLE= 0 FOR DOUBLE SHEATH */ -

/* = 1 SINGLE SHEATH ¥/

/* ISPEED = 0 MATCHED SHEATH */

/% = 1 VSHIFT INPUT ¥/ ’ .

/% = 2 VSHIFT = VAVERAGE */ R

/* IPLASMA= 0 FOR FULL PLASMA ELECTRON DYNAMICS */ .

/* IPLATE = 0 FOR FULL PLATE ELECTRON DYNAMICS */ .

W% >*

;*****************************************************; ot
PHIM=ECHI; )

R=(PHIZ-PHIM)/CI;

SCI=SQRT(CI);

BETA=BETATEM*SQRT(CE/2.);

TEM1=8QRT(3.1415926)/2.;

TEM2=TEM],; S

TEM3=SQRT(3.1415926)/2.*ERF (SQRT(PHIM/CE)); )

TEM4=FID(0.,1000000.,1.,0.,SQRT(PHIM)); R
/¥ TEM4=SQRT(3.1415926)/2.*EXP(PHIM)*(1.-ERF(SQRT(PHIM))); */




-13- APPENDIX B

TEM5=FEB (0. , 1000000.,1. ,PHIM);
/*  TEM5=1./SQRT(PHIM)-2.*EXP(PHIM)*SQRT(3.1415926)/2.%
(1.-ERF(SQRT(PHIM))); */
TEM6=2*FI1(0.,1000000.,1.,0.,SQRT(PHIM));
, TEM7=2*FI1(0.,1000000.,1.,0.,0.);

C1=(TEM1+TEM3)/(TEM1);

C2=TEM4/TEM2;

€3=2.%(TEM1+TEM3) /TEM1+SQRT (CE/PHIM)*EXP(~PHIM/CE)/TEM1;

C4=TEM5/TEM2;

C5=( TEM3-SQRT(PHIM/CE)*EXP(-PHIM/CE)+

SQRT(3.1415926)/2.% (1. ~EXP(~PHIM/CE)) )/

(TEM1);

C6=(TEM6-TEM7)/TEM2;

IF (IPLASMA-=0) THEN BEGIN;

Cl=2.;

C3=4.;

C5=2.*(1.~EXP(~-PHIM/CE));

END;

IF(IPLATE~=0) THEN BEGIN;

C2=1./SQRT(1.+3.14159*PHIM);

C4=3.14159/2./(1.43.146159*PHIM)**(1.5);

€6=2./3.14159%(SQRT(1.43.14159*PHIM)~1.);

END;

K1=C3/CE/C1;
K2=C4+C2+*C3/CE/C1;
K3=C5*CE/C1;
K4=C6-C2#C5*CE/C1;

IF (ISPEED=0) THEN BEGIN;
IF(ISOL=0) THEN BEGIN;
UR0=2.0;FO0=F (UR0);
UR1=2.1;F1=F(UR1);

END;

ELSE BEGIN;

UR0=1.0;FO0=F (URD) ; ST
UR1=1.1;F1=F(UR1); L]

END; .

CON:DO I= 1 TO 20; ’
UR2=UR1-(UR1-URO)/(F1-F0)*F1; RN
F2=F(UR2); ; ¢¢1
IF(ISOL=0) THEN BEGIN; ERERR
IF (ABS (F2)<=ERROR) THEN GO TO FIN; PR
ELSE BEGIN; ) ]
1F (ABS (F2)<=ERROR*TRAPPED) THEN GO TO FIN; S ]
END; L

URO=UR1;FO=F1;
UR1=UR2;F1=F2;
END CON;
PUT FILE(AUXPRT) SKIP LIST('FAILED TO CONVERGE');
STOP;
F:PROC(XX) RETURNS(FLOAT BIN(31));

............

.....
......
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DCL (FX,XX) FLOAT BIN(31);
IF(ISOL=0) THEN BEGIN; ]
‘& ALPH=(K1+BA(XX,R))/K2; N
‘ BET=(EA(XX,R)-K3)/Ké; .
IF( ISINGLE=0) THEN L
FX=ALPH-BET; S
. ELSE " ';
. FX=ALPH-NENO; S
e END; N
ELSE BEGIN;
BETA=0. ;
IF(R>=0.) THEN BEGIN; ,
FX=2.*TRAPPED-EXP (~XX**2)/ ‘
(FID(BETA/SCI,1000000.,1.,XX,0.) + |
'o FID(BETA/SCI,SQRT(R),1.,XX,0.) ); '
]
END;
ELSE BEGIN;
FX=SURFACE -EXP (~XX*%2)/
(FID(BETA/SCI,1000000.,1.,XX,0.) );
END; o
2’ END; ;o
RETURN(FX) ; 1
END F;
END;
- IF(ISPEED=1) THEN BEGIN; S
7@ UR2=UIN*SQRT(CE/2./CI); N
END; - <
IF(ISPEED=2) THEN BEGIN; ]
IF(R<=0.) THEN UR2=UIN; SO
ELSE UR2=UIN*EXP(-R)*SQRT(CE/2./CI); R
54 END; .
2 ® ' 4
. FIN:UR=UR2;
- IF(ISOL~=0) THEN
: ALPH,BET=(EA(UR,R)-K3) /K&4;
; NEB=(BET+ALPH)/2.;
, IF(ISINGLE~=0) THEN
o NEB=NENO ; b
. INTERR=NEB-BET;
5 NEP=(1.-C2*NEB)/C1; .
! IF R>0. THEN -
- UP=MAX (BETA,SQRT(R)*SCI1,0.);
' ELSE UP = MAX(BETA,0.);
» IF R<=0. THEN RZ=0.; v
ELSE RZ=R; -‘ 31
ATEM=( FIJ(UP/SCI,1000000.,1.,UR) - SURFACE*.5*EXP(-R) )/ ]
( FID(BETA/SCI,1000000.,1.,UR,0.) + FID(BETA/SCI,UP/SCI,1.,LUR,0.) PORRS
y: + SURFACE*SQRT(3.1415926)/2.%(1.-ERF(SQRT(RZ))) ); .
3 JION=SQRT(CI/MR)*ATEM; j
VAVE=SQRT(2.%*CI/CE)*ATEM; Ly
: ]
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JEE= -NEB/SQRT(3.1415926);

JEP= -(1-C2*NEB)/C1/SQRT(3.1415926)*SQRT(CE)*
° EXP(-PHIM/CE); .

JNET=-JEE+JEP;

BNEB=NEB;

BINET=JNET/SQRT(CE/2.);

UZERO=UR*SQRT(2.*CI/CE);

PUT FILE(REFPRT) SKIP DATA(C1,C2,C3,C4,C5,C6,NEB);

. RETURN;

BA:PROC(TUZERO,TR) RETURNS(FLOAT BIN(31));
DCL(TUZERO,TR,SQTR,TEMBA,B1,B2,B3,B4) FLOAT BIN(31);
B1=FIB(BETA/SCI,1000000.,1.,TUZERO,0.);
B3=CI*FID(BETA/SCI,1000000.,1.,TUZERO,0.);
Py IF(TR>(BETA/SCI)**2) THEN BEGIN;
SQTR=SQRT(TR); o
B2=FIB(BETA/SC1,SQTR,1.,TUZER0,0.);
B4=CI*FID(BETA/SCI,SQTR,1.,TUZERO,0. ),
TEMBA=(B1+4B2)/(B3+B4);
END;
ELSE
TEMBA=B1/B3; ®
RETURN (TEMBA) ;
END BA;

EA:PROC(TUZERO,TR) RETURNS (FLOAT BIN(31));
DCL(TUZERO, TR, TEMEA, TPHIM.TPHIZ,SQZ'1,SQZ, SQ*.SQP1 . .
® 1ZI,1ZM1,10M,10Z,12M) »
FLOAT BIN(31);
TPHIM=PHIM/CI; TPHIZ=TPHIM+TR;
IF(TPHIZ<=0.) THEN TPHIZ=0.;
IF(TPHIZ>=TPHIM) THEN BEGIN;
: SQZM=SQRT (TPHIZ-TPHIM);
° 1ZMI=(1.-ERF(SQZM))*SQRT(3.1415926)/2. ; »
TOM=ERF (SQRT (TPHIM) )*SQRT(3.1415926)/2 . ;
IZI=(1.-ERF(SQRT(TPHIM)))*SQRT(3.1415926)/2. ;
PLASMA= (SQRT(3.1415926)-SURFACE*12M1)/
(FID(BETA/SCI, 1000000.,1. ,TUZERO,0.) +
FID(BETA/SCI,SQZM,1.,TUZERD,0.) );

‘ TEMEA=2 . *PLASMA* ’
( FII(BETA/SCI,1000000.,1.,TUZERO,
SQRT(TPHIM)) - ‘
FII(BETA/SCI,1000000.,1.,TUZERO,
0.) +
FII(BETA/SCI,SQ2M,1.,TUZERO,
' SQRT(TPHIM)) - ’
F11(BETA/SCI,SQZM,1.,TUZERO,
0.))
+ TRAPPED* 0
( 2.*EXP(TPHIM)*10M-2.*SQRT(TPHIM) ) U
+ SURFACE* S
1 ( EXP(TPHIM)*IZI+EXP(TPHIM-TPHIZ)*SQRT(TPHIZ) »

-1ZMI-SQZM*EXP(TPHIM-TPHIZ) );
TEMEA=TEMEA/SQRT(3.1415926);

.......
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END;
ELSE BEGIN;
® SQZ=SQRT(TPHIZ);
SQM=SQRT(TPHIM);
SQPI=SQRT(3.1415926);
10Z=SQPI*ERF(SQZ)/2.;
121=SQP1/2.-10Z;
1ZM=SQPI/2.*(ERF(SQM)-ERF(5Q2));
o PLASMA=SQPI*(1.-SURFACE/2.)/
FID(BETA/SCI, 1000000.,1.,TUZERO,0.);
_ TEMEA=SURFACE* (EXP (TPHIM)* (1ZI+12M)
+2 . %SQZ*EXP (TPHIM-TPHIZ)
-SQM-SQPI/2.)/SQPI
+TRAPPED* (2 .*EXP (TPHIM)*10Z -
© 2. *EXP (TPHIM-TPHIZ)*SQZ)/SQPI
+2.*PLASMA* (FI1I(BETA/SCI,1000000.,1.,TUZERO,
SQRT(TPHIM))-
FII(BETA/SCI,1000000.,1.,TUZERO,
0.) )/S8QPI;
END;
¢ RETURN(TEMEA*CI);
END EA;
END CAL3;
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-1- APPENDIX C

APPENDIX C: NON-ISOTHERMAL PROGRAMS

C.1 PREDCOR: Computes the Unsteady
Non-Isothermal Solution

C.2 SHEATH: Computes the Sheath Model Solution ) _~‘
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C.1 PREDCOR: Computes the Unsteady Non-Tosthermal Solution
- 4
o
4
/*  PREDCOR FOR FULL TEC */ B
/*  APRIL 27, 1980: REVISED TO INCLUDE YEN FACTOR */ SR
/* MAY &4, 1980: REVISED TO INCLUDE IVD, FINAL DOT, ELOSSB, */ =
/* AND CORRECT MURS IN BC. */ >
PREDCOR:PROC( T1, T2, TAU, NEB, NSTEPS, TE, TC, ENR, CAR, :
TDOT1, NDOTI1, :
PN, SMR, LAMDAR, KN, NR, ARECN, TCHAR, EGNDB, RE, -
N,I, AN, AT, BN, BT, CN, CT) REORDER; )
DECLARE - .
SUMV ENTRY((*) FLOAT DEC(16),FIXED BIN(31),FIXED BIN(31)) ’
RETURNS (FLOAT DEC(16)), ]
SQRT BUILTIN, ]
/*THE FOLLOWING TIME VARIABLES ARE NOND BY TCHAR. */ ]
(T1,T2, /*START & FINISH TIMES. */
DT, /*ACTUAL TIME STEP USED. */ - 1
TIME, »
AN,AT,BN,BT,CN,CT, /*PRED-COR ALPHA,BETA,GAMMA  */ 5
IVD EXT, /*PLASMA POWER GAIN */ 3
(LAMTAU, LAMNEB)EXT, i d
/*THE FOLLOWING VARIABLES REFER TO THE MOST RECENT TIME */ LI
TAU(*), /*E- TEMPERATURE (NOND BY TE). */ A
NEB(*), /*ELECTRON DENSITY (NOND BY NR)*/ e
TDOT1(*), NDOT1(*), /*PREDICTOR STEP TIME DERIV.S */ L
((ENE,CNE) INIT(0.8), /*E & C EMITTED DENSITY, NE. */ S
(ECHI,CCHI) INIT(3), /*EMITTER & COLLECTOR DROPS  */ .
(EALPHA,CALPHA) INIT(0.5) /*E & C ION SPEED PARAMETERS */ |
) STATIC EXTERNAL,
/*THE FOLLOWING ARE CONSTANT DURING THIS PROGRAM */
MUI(0:N+1), /*ION MOBILITY */ -]
ONE INIT(1), -
1, /*CURRENT (NOND BY REF DIFF C) */ S
Dz, /*2ETA INCREMENT BETWEEN PTS %/ ) )
TCHAR, /*AN ELECTRON TRANSIT TIME */ R
ERR, /*ACCURACY PARAM FOR SHEATH  */ T
TE,TC, /*EMITTER & COLLECTOR TEMPERATU*/ SR
DTAUNDZ, SO
PN, /*NEUTRAL PRESSURE (TORR) */ S
ENR,CNR, /*E. & C. RICHARSON DENSITIES. */ ) )
NR, /*REFERENCE ELECTRON DENSITY */ .
EGNDB, /*E(0)/KT(E). NON-D BINDING E */ i
ELOSSB EXT, /*ENERGY LOSS PER IONIZATION */ -]
RE, /*Q(E-A) =QO0 * E**-RE */ X
SMR, /*SQRT OF ELECTRON/ION MASS RAT*/
LAMDAR, /* MFP RATIO, =RMUR/SMR */
RMUR, /*MU RATIO, =SMR*LAMDAR */
KN, /*KNUDSEN NUMBER */

.............................................

_________________________________
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NNR, /*REFERENCE NEUTRAL DENSITY.
ARECN, /*COEFFICIENT OF RECOMBINATION
PI, /* 3.14159...
CA,CSAHA, /*CONSTANTS IN MSOURCE EQN

/*THE FOLLOWING ARE VECTORS (0:N+1).
(NNB, TAUN, /*NEUTRAL DENSITY & TEMP.
/* NON-D BY SMITTER VALUES
MSOURCE, /*E- PRODUCTION RATE (NOND)
ESOURCE, /*ENERGY SOURCE TERM (NOND)
cv,
MUEA, /*E- MOBILITY AMONG ATOMS.
NDOT2,TDOT2,
TTILDA,NTILDA)
(0:N+1) ) FLOAT DEC(16),

CFIX BIT(1) EXT, /*DID C-SHEATH REQUIRE FIX?
EFIX BIT(1) EXT,
(NSTEPS,
N, /*# OF GRID PTS, E TO C INCL.
J,
COUNT) /*PRESENT

FIXED BIN(31);
DCL IDEN FIXED BIN(31) EXT;
/*HANDLE EXCEPTIONAL CONDITIONS.
ON FINISH PUT SKIP(5) DATA;

PI1=3.1415926 + 5.3589793E-8;
DZ=0NE/(N-1);
DT=(T2~T1)/NSTEPS;
CFIX,EFIX='0'B;
ERR=1E-3;
/*SET NEUTRAL TEMPERATURE AND DENSITY.
IF TE=TC THEN TAUN=1;
ELSE DO J=0 TO N+1;
TAUN(J)=1 + (TC/TE-1)*(J-1)/(N-1);
END;
NNR=965 .5E16**PN/TE;
NNB=1/TAUN;
DTAUNDZ=TAUN(N)-TAUN(1);
/*SET TRANSPORT PARAMETERS.
RMUR=LAMDAR*SMR ;
MUI=SQRT(TAUN);
/*SET IONIZATION AND SAHA PARAMETERS.
CA=0.41283*ARECN*TCHAR* (NR/1E14)*%2 * (TE/1500)*¥*-4.5;
CSAHA=LOG( (1.4027E20*NNR/NR/NR) * (TE/1500)**1.5 );

DO COUNT=0 TO NSTEPS-1;
TIME=T1+COUNT*DT;
/*PREDICTOR STEP
CALL DOT(NDOT1,TDOT1,NEB,TAU);
NTILDA=NEB + AN*DT*NDOT1;
TTILDA=TAU + AT*DT*TDOTI1;
/*CORRECTOR STEP

IF( AN=0. & AT=0. ) THEN BEGIN;

*/ ;
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NDOT2=0. ; TDOT2=0. ;GO TO NOCOR;END;
CALL DOT(NDOT2,TDOT2,NTILDA,TTILDA);
® NOCOR: '.
NEB=NEB + DT*( BN*NDOT1+CN*NDOT2 );
TAU=TAU + DT*( BT*TDOT1+CT*TDOT2 );
END;
/*UPDATE TIME DERIV.S, IMAGE POINTS, AND FIND PLASMA POWER GAIN#*/
CV(0),CV(N+1)=0;
® ESOURCE (0) ,ESOURCE (N+1)=0; ®
[ CALL DOT(NDOT1,TDOT1,NEB,TAU);
| IVD=  0.5%( ESOURCE(1)~-CV(1)*TDOT1(1) )
3 + SUMV( ESOURCE-CV*TDOT1, 2, N-1)
: +0.5%( ESOURCE (N)-CV(N)*TDOT1(N) );
IVD=DZ*IVD+ 2*]*(TAU(1)-TAU(N)) - (NEB(1)*ENE/KN)*(TAU(1)-1);
1
i‘ /* DOT: RETURNS WITH NEW NEBDOT AND TAUDOT. ¥*/ o
b Y e e e el
/* */
/* COLLECTOR EMISSION IS NEGLECTED. */
i /* */
é( /*  THERMAL DIFFUSION RATIO IS INCLUDED. */ ®
/% */
f /* APRIL 2, 1980, (B.C. BASED ON MARCH 1, 1980 VERSION) */

DOT:

........

/ Feded il dedbier e dedelr e b de bbb e At e e A b de e e e e de e e e e b e ek /

PROC (NEBDOT, TAUDOT, NEB, TAU) REORDER;
DECLARE
CHKDOT BIT(1) EXT INIT('0'B),/*IF 1 PRINT DIAGNOSTIC INFO */
SHEATH ENTRY (DEC(16),DEC(16),DEC(16),DEC(16),DEC(16),
DEC(16) ,DEC(16) ,DEC(16),DEC(16),DEC(16)),
(TAUDOT (*),
NEBDOT(*),
NEB(*),
TAU(*),
PC(0:N+1), /*CHARGED PARTICLE PRESSURE  */
F(15) EXT INIT(5.74E-3, 1.4E-3, 2.3, .2, .027, .00574,
L0424, 3.2, 61.893, 11.607, 15473, 27.04),

/*SHEATH VARIABLES */
NCMIN, J*MINIMUM NEB(N) TO ALLOW I. */
U,GU,DELU,DGDU, DELTAU,

/*TRANSPORT VARIABLES */
FYEN EXT INIT(1), /*YEN THERMAL CONDUCTIVITY FACT*/
K(0:N+1), /*THERMAL CONDUCTIVITY */
MNS, /*SUM OF MUI*NEB AT J & J+1  */
MUIS,MURS, /*SUM OF MUI & MUR AT J,J+1  */

J*CONSERVATION EQUATION VARIABLES */
EN_Z,CN_Z, /*SPATIAL NEB DERIVS */
ET _ETA,ET_2,CT ETA,CT_Z, /*SPATIAL DERIVS OF TAU */
EDETA,CDETA, /*ETA XPACING BETWEEN GRID-PTS */
EPC_2,CPC_2Z, /*PC GRADIENT FROM B.C. */

MURSOLD ,MNSOLD ,MUISOLD,

NBCOA,TBCOA ,NBCOB,TBCOB,NBCOC,TBCOC,
NBC1A,TBC1A,NBC1B,TBC1B,NBC1C,TBC1C,
NEBA(O:N+1) ,NA(O:N+1) ,NEBB(O:N+1) ,NB(O:N+1),

......................
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NEBC(0:N+1),NC(0:N+1) ,NEBV(0:N+1) ,ND(0:N+1),
NS(O:N+1),TAUA(O:N+1),TA(O:N+1),TAUB(0:N+1), .
TB(0:N+1),TAUC(0:N+1),TC(0:N+1),TAUV(D:N+1),TS(0:N+1), -
NEBU(0:N+1),TAUU(O:N+1), i
ALPHA(0:N+1) ,BETA(0:N+1), .

/*TEMPORARY ENERGY EQUATION VARIABLES */
QKM, QKP,
DETA,DETAP, /*GRID PT SPACING IN ETA */ :
KDE, /*THERMAL COND X D ETA AVE */ ®
CONVECTN, .
POHMIC, _ ,
PB, PBP, /*ENERGY STORED IN EXCITED STAT*/ o
SIGMA) ;
FLOAT DEC(16), -
/*TEMPORARY DENSITY EQUATION VARIABLES */
(GAMMAM, GAMMAP,
D1B,D21B,D32B,P0,IB,NUE, /*PARAMETERS FOR MSOURCE %*/ k
A, C
NES2) - :
FLOAT DEC(16), »
(3,1J) FIXED BIN(31); ]
ON FINISH PUT SKIP(5) DATA; RO
/*SET THERMAL & ELECTRICAL CONDUCTIVITIES AT O+ (E) &, 1- (C). */ S
IF TAU(1)<0.1 THEN DO; TAU(1)=0.1; EFIX='1'B; END; i
IF TAU(N)<0.1 THEN DO; TAU(N)=0.1; CFIX='1'B; END; LI
IF RE=0.5 THEN MUEA=TAUN; —
ELSE IF RE=0.0 THEN MUEA=TAUN/SQRT(TAU); RN
ELSE IF RE=-.5 THEN MUEA=TAUN/TAU; O
ELSE MUEA=TAUN* ( TAU**(RE-0.5) ); N
K=( (RE+2)/FYEN )*MUEA*NEB*TAU; e
PC=NEB* (TAU+TAUN) ; "
DETA,DETAP=LOG (K(2)/K(1)) * DZ/(K(2)-K(1)); S
/*DETERMINE EMITTER SHEATH */

CALL SHEATH(ECHI,ENE,I*KN/NEB(1),TAU(1),ENR/NEB(1), RN
TE, SMR, EALPHA, 0.8, ERR); SRS

IF ECHI<=1E-5 | ECHI>=20 THEN EFIX='1'B; -
/*FIND EMITTER (0+) DERIVATIVES FROM B.C. */

ET_ETA=(TAU(1)-1)*ENE*NEB(1)/KN - I*(ECHI-TAU(1)/2);

ET_Z=ET _ETA/K(1);

EPC_Z=(SQRT(P1/8/EALPHA)/LAMDAR/KN)*NEB(1)/MUI(1)

- I/MUEA(1);

EN_Z=( EPC_Z-NEB(1)*(ET_Z+DTAUNDZ) )/( TAU(1)+TAUN(1) );
/*SOLVE COLLECTOR SHEATH */

CALPHA=1/TAU(N);

CNE=0;

U=1.0;GU=G(U) ;DELU=.01;

CON:DO IJ=1 TO 50; R
DGDU=(G (U+DELU)-GU)/DELU; -“5971
DELTAU=-GU/DGDU; »

=U+DELTAU;
GU=G(U);

"y

........................
...................................
...........................................
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i IF (ABS (GU)<=.,0001) THEN GO TO FIN;

END CON;
PUT SKIP LIST(' COLLECTOR SHEATH FAILED TO CONVERGE'); -
STOP; ’

CCHI=0; CFIX='1'B; "

GO TO FIN2;

G:PROC(UX) RETURNS(DEC(16));

DCL(UX,GX,SQX) DEC(16); L

IF (UX<=0.) THEN S$QX=0.; -

ELSE SQX=SQRT(UX); ’

GX=EXP (UX)* (1.+ERF (SQX))*2.

~NEB(N)*SQRT(TAU(N))/I/KN;

RETURN(GX) ;

END G;

FIN:CCHI=U*TAU(N); -

FIN2: )

/*DETERMINE DERIVATIVES AT COLLECTOR (1-) FROM B.C. */

CT_ETA=-1*(CCHI-TAU(N)/2);

CT_2z=CT_ETA/K(N);

CPC_2=(-SQRT(P1/8/CALPHA) /LAMDAR/KN)*NEB (N) /MUI (N)

- I/MUEA(N);
CN_2=( CPC_Z-NEB(N)*(CT_Z+DTAUNDZ) ) / ( TAU(N)+TAUN(N) ); )
CDETA=LOG(K(N)/K(N-1)) * DZ/(K(N)-K(N-1));

NBCOA=TAU(1)+TAUN(1);

NBCOB=SQRT (PI/EALPHA/8.)/LAMDAR/KN/MUI (1) -ENE*NEB(1)/K(1)* E
(TAU(1)-1.)-DTAUNDZ; SR

NBCOC=I*NEB(1)/K(1)*(ECHI-TAU(1)/2.)-I/MUEA(1); )

NBC1A=TAU(N)+TAUN(N);

NBC1B=-SQRT(P1/CALPHA/8.)/LAMDAR/KN/MUI (N)-CNE*NEB(N) /K(N)*
(TAU(N)-1.)+DTAUNDZ;

NBC1C=-1*NEB(N)/K(N)*(CCHI-TAU(N)/2.)~I/MUEA(N);

TBCOA=1. ;

TBCOB=ENE*NEB (1) /KN+1/2.;

TBCOC=-ENE*NEB (1) /KN-I*ECHI;

TBC1A=-1.;

TBC1B=CNE*NEB(N)/KN-1/2.;

TBC1C=-CNE*NEB (N) /KN+I*CCHI;

TRV

NEBA(0)=(NBCOA*LAMNEB)/(2.%*DZ); ’

NEBB (0)=-LAMNEB*NBCOB;

NEBC(0)=-NBCOA*LAMNEB/(2.%*DZ);

NEBV(0)=NBCOB*(1.-LAMNEB)*NEB(1)+NBCOC-(1.-LAMNEB)*
NBCOA*(NEB(2)-NEB(0))/(2.*D2);

TAUA (0)=TBCOA*LAMTAU/ (2.*DETAP) ; T

TAUB(0)=-LAMTAU*TBCOB; '

TAUC (0)=-TBCOA*LAMTAU/ (2.*DETAP) ; ‘

TAUV(0)=TBCOB*(1.-LAMTAU)*TAU(1)+TBCOC- (1. -LAMTAU)*
TBCOA* (TAU(2)-TAU(0))/(2.*DETAP);

NEBA(N+1)=(NBC1A*LAMNEB)/(2.%*D2);

NEBB (N+1)=-LAMNEB*NBC1B;
NEBC(N+1)=-NBC1A*LAMNEB/(2.%*DZ);
NEBV(N+1)=NBC1B*(1.-LAMNEB)*NEB(N)+NBC1C-(1.-LAMNEB)*

= e e e e e
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NBC1A*(NEB(N+1)-NEB(N-1))/(2.%DZ);
TAUA(N+1)=TBC1A*LAMTAU/(2.*CDETA) ;
TAUB (N+1)=-LAMTAU*TBC1B;
TAUC(N+1)=-TBC1A*LAMTAU/ (2.*CDETA) ;
TAUV (N+1)=TBC1B* (1. -LAMTAU)*TAU(N)+TBC1C- (1. -LAMTAU)*
TBC1A* (TAU(N+1)-TAU(N-1))/(2.%*CDETA);

/*INITIALIZE GAMMAP & QKP FOR LOOP. */
MNS=MUI (1)*NEB (1)+MUI (2)*NEB(2);
MURS=MUI (2)/MUEA(2) + MUI(1)/MUEA(1)*( 1 -2%DZ*(
(0.5-RE)*ET_Z/TAU(1) - 0.5*DTAUNDZ/TAUN(1)) );
GAMMAP=  0.5%( ( (MUI(1)+MUI( 2 ))*(PC( 1 )-PC(0))
)/DZ +I*MURS );
QKP=(TAU(1)-TAU(0))/DETA;
MUIS=MUI (1)+MUI(2);

DO J=1 TO N;
/*UPDATE FOR NEW J. */
GAMMAM=GAMMAP;
QKM=QKP;
DETA=DETAP;
MNSOLD=MNS ;
MUISOLD=MUIS;
MURSOLD=MURS ;
IF J-=
THEN DO;
DETAP=LOG(K(J+1)/K(J)) * DZ/(K(J+1)-K(J));
MNS=MUI (J)*NEB(J)+MUI (J+1)*NEB(J+1);
MUIS=MUI (J)+MUI (J+1);
MURS=MUI(J)/MUEA(J) + MUI(J+1)/MUEA(J+1);
END;
ELSE
MURS=MURS +2*DZ*(MUI(N)/MUEA(N))*((.5-RE)*CT_Z/TAU(N)
« 0.5*DTAUNDZ/TAUN(N));
/*FIND AMBIPOLAR FLUX AT J+1/2. */
GAMMAP=0.5*( ( MUIS*(PC(J+1)-PC(J))
)/DZ +I*MURS );
/*FIND MASS SOURCE AT J. */
A=CA/TAU(J)**4.5;
NES2=NNB(J) * TAU(J)**1.5 * EXP( CSAHA-EGNDB/TAU(J) );
D21B=F(7)*(1+F(8)/TAU(J));
D32B=F (2)*EXP(F(3)/TAUJ));
IB=A*NES2*( 1+4F(1)/NEB(J) )/( 1+D21B*(1+D32B/NEB(J))/NEB(J)
)
PO=1+( F(4)/NEB(J) )*( 14F(5)/NEB(J) )/( 1+F(6)/NEB(J) );
NUE=NEB(J)*NEB(J)/NES2;
MSOURCE (J)=NEB(J)*IB*( 1-PO*NUE );
IF(IDEN=1) THEN
MSOURCE (J)=NEB (J)*A*NES2;

NEBDOT(J)=RMUR* (GAMMAP-GAMMAM) /DZ + MSOURCE(J);

NA (J)=RMUR*MUIS* (TAU(J+1)+TAUN(J+1))/2./DZ2%*2;
NB (J)=RMUR* (MUIS+MUISOLD)* (TAU(J)+TAUN(J))/2./DZ*¥2;
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NC (J)=RMUR*MUISOLD* (TAU(J~1)+TAUN(J-1))/2./DZ#*2;
ND (J)=1* (MURS-MURSOLD)*RMUR/DZ/2. ;
NS (J)=IB*(1.-PO*NUE);
IF(IDEN=1) THEN
NS (J)=A*NES2;

NEBA (J)=-DT*NA(J)*LAMNEB;

NEBB (J)=1.+DT*NB (J)*LAMNEB-DT*NS (J)*LAMNEB;

NEBC (J)=-DT*NC (J)*LAMNEB;

NEBV (J)=NEB (J)+DT*NA(J)*(1.~LAMNEB)*NEB (J+1) -DT*NB (J)*
(1.-LAMNEB)*NEB (J)+DT*NC(J)*(1.-LAMNEB)*NEB (J-1)+
DT*ND(J)+DT*NS(J)*(1.~LAMNEB)*NEB(J);

KDE=K (J)* (DETA+DETAP)/2;
QKP=(TAU(J+1)-TAU(J))/DETAP;

CONVECTN=-(1.5)*I* (DETA*QKP+DETAP*QKM)/ (2*KDE) ;
SIGMA=NEB(J)*MUEA(J);
POHMIC=I*( I/SIGMA + TAU(J)*( NEB(J+1)-NEB(J-1) )
/ (2*DZ*NEB(J)));
PBP=( F(9)*NNR/NR )*EXP( -F(10)/TAU(J) );
PB=( F(11)*NNR/NR )*EXP( -F(12)/TAU(J) );
CV(J)=1.5*NEB(J) + NNB(J)*(F(10)*PBP+F (12)*PB*NUE)
/ (TAU(J)*TAU(J));
ESOURCE (J)=-ELOSSB*MSOURCE (J)
- NNB(J)*PB*( 2*NUE*NEBDOT(J)/NEB(J) );

TAUDOT (J)=( (QKP-QKM)/KDE + CONVECTN + POHMIC + ESOURCE(J) )
/ CVQI);

TA(J)=1./(DETAP*KDE*CV(J));
TB(J)=(1./DETAP+1./DETA)/KDE/CV(J);
TC(J)=1./DETA/KDE/CV(J);
TS (J )=(CONVECTN+POHMIC+ESOURCE (J)) /CV(J) ;
TAUA (J)=-DT*LAMTAU*TA(J) ;
TAUB(J)=1.+DT*LAMTAU*TB (J) ;
TAUC(J)=-DT*LAMTAU*TC (J) ;
TAUV (J)=TAU(J)+DT* (1. -LAMTAU)*TA (J)*TAU(J+1)
-DT*(1.-LAMTAU)*TB (J)*TAU(J)
+DT* (1. -LAMTAU)*TC (J)*TAU(J-1)
+TS(J)*DT;

IF CHKDOT THEN PUT SKIP(2) DATA(NEB(J),TAU(J),MSOURCE(J),
J,PB,PBP,A,
D21B,D32B,P0,IB,NUE,NES2,QKP,GAMMAP ,DETAP ,MURS) ;
END;

NEBC(0)=NEBC(0)~-NEBC(1)*NEBA(0)/NEBA(1);
NEBB(0)=NEBB(0)-NEBB(1)*NEBA(0)/NEBA(1);
NEBV(0)=NEBV(0)-NEBV(1)*NEBA(0)/NEBA(1);
NEBA(O)=NEBB(0);
NEBB(0)=NEBC(0);
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NEBA (N+1)=NEBA (N+1)-NEBA(N)*NEBC (N+1)/NEBC(N);
NEBB (N+1)=NEBB (N+1)-NEBB (N)*NEBC (N+1) /NEBC(N) ;
NEBV(N+1)=NEBV(N+1)-NEBV(N)*NEBC (N+1)/NEBC(N);
NEBC (N+1)=NEBB(N+1);
NEBB(N+1)=NEBA(N+1);

TAUC(0)=TAUC (0)-TAUC(1)*TAUA(0)/TAUA(1);
TAUB(0)=TAUB (0)-TAUB(1)*TAUA(0)/TAUA(1);
TAUV(0)=TAUV(0)-TAUV(1)*TAUA(O0)/TAUA(1);

TAUA (0)=TAUB(0);

TAUB (0)=TAUC(0);

TAUA(N+1)=TAUA (N+1)-TAUA(N)*TAUC(N+1) /TAUC(N) ;
TAUB (N+1)=TAUB (N+1)-TAUB (N)*TAUC(N+1) /TAUC(N);
TAUV (N+1)=TAUV (N+1)-TAUV(N)*TAUC(N+1) /TAUC(N) ;
TAUC(N+1)=TAUB (N+1);

TAUB (N+1)=TAUA(N+1);

ALPHA (0)=-NEBA (0) /NEBB(0) ;
LOOP1:DO0 J=1 TO N;
ALPHA (J)=-NEBA (J)/ (NEBC (J)*ALPHA(J~1)+NEBB(J));
END LOOP1;
ALPHA (N+1)=0. ;
BETA(0)=NEBV(0)/NEBB(0);
LOOP2:D0 J=1 TO (N+1);
BETA(J)=(NEBV (J)-NEBC(J)*BETA(J-1))/(NEBC(J)*ALPHA(J-1)+NEBB(J));
END LOOP2;
NEBU(N+1)=BETA(N+1);
LOOP3:DO J=N TO 0 BY(-1);
NEBU(J)=ALPHA (J)*NEBU(J+1)+BETA(J);
END LOOP3;

ALPHA (0)=-TAUA(0)/TAUB(0) ;
LOOP4:DO J=1 TO N;
ALPHA (J)=-TAUA(J)/ (TAUC (J)*ALPHA (J~1)+TAUB(J));
END LOOP4;
ALPHA (N+1)=0. ;
BETA(0)=TAUV(0)/TAUB(0);
LOOP5:D0 J=1 TO (N+1);
BETA (J)=(TAUV (J)-TAUC(J)*BETA(J-1))/ (TAUC(J)*ALPHA(J-1)+TAUB(J));
END LOOPS;
TAUU(N+1)=BETA(N+1);
LOOP6:D0 J=N TO 0 BY(-1);
TAUU (J)=ALPHA (J)*TAUU(J+1)+BETA(J);
END LOOP6;

NEBDOT=(NEBU-NEB)/DT;

TAUDOT=(TAUU-TAU)/DT;
IF CHKDOT THEN PUT SKIP(3) DATA;
END DOT;
END PREDCOR;
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C.2 SHEATH: Computes the Sheath Model Solution

SHEATH : PROC (OUTCHI , OUTNE , INCUR, INTAU,, INNRNP, INTE , INMEMI ,
OUTALP, INDUM, INERR) ; DR
DCL(JBAR, INCUR, CE , INTAU,NRP , INNRNP, TE , INTE , SMR, INMEMI , ERR, N
o UZERO, >
f PHIZ,INDUM, INERR,CI,PHIM,OUTCHI ,NEB ,OUTNE ,OUTALP,VI) :
p DEC(16);
4 UZERO=2.1;
CE=INTAU;
JBAR=INCUR*2. /SQRT(3.14159)*SQRT(2./CE); -
t’ NRP=INNRNP; »
{ TE=INTE; :
i SMR=INMEMI; /* SQUARE ROOT OF MASS RATIO */
. ERR=INERR;
- CI=1.;

¢ PHIM=REPHIM(JBAR,CE,CI); > .
NEB=RENEB (JBAR, PHIM,CE,CI);
PHIZ=LOG (INNRNP/NEB) ;
VI=REVI (UZERO,PHIZ,PHIM,CE,CI);
IF(VI<=.001) THEN VI=.001;

o OUTCHI=PHIM; I
! OUTNE=NEB; :
OUTALP=1./CE/(VI)**2;
RETURN;
o REPHIM: PROC (TJBAR,TCE,TCI) RETURNS( DEC(16));

DCL(TJBAR,TCE,TCI,TPHIM,TA,TB) DEC(16);
TA=(.5000*SQRT(2.)-.2900*SQRT(1.))/
(SQRT(2.)-SQRT(1.));
TB=(.5000-.2900)/(SQRT(1./1.)-SQRT(1./2.));
. TPHIM=(TB/ (TA-TJBAR) )¥**2 #*TCE/2.1; IR
¢ RETURN(TPHIM); B
END REPHIM; '

RENEB : PROC (TJBAR, TPHIM, TCE,TCI) RETURNS( DEC(16));
DCL(TJBAR,TCE,TCI,TNEB, TPHIM, SQRTPI , SQRTCE , SQPHCE,
C1,C2,EXPHCE) DEC(16);
¢ SQRTPI=SQRT(3.1415926);
. SQRTCE=SQRT(TCE);
SQPHCE=SQRT (TPHIM/TCE) ;
C1=1.+ERF(SQPHCE) ;
IF(TPHIM>10.) THEN
; c2=0.; e
C ELSE v
C2=EXP(TPHIM)*( 1. - ERF(SQRT(TPHIM)) ); -
EXPHCE=EXP (-TPHIM/TCE) ; R

,"'.l".'. ."‘-.‘- /,.4 ‘
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TNEB=(TJBAR*SQRT (TCE/2. )+SQRTCE/C1*EXPHCE/SQRTPI)/
(1./SQRTPI+SQRTCE/SQRTPI*C2/C1*EXPHCE);
o RETURN(TNEB) ;
| END RENEB;
’ s
REVI : PROC(TUZERO, TPHI1Z,TPHIM,TCE,TCI) RETURNS( DEC(16));
DCL(TUZERO, TPHIZ,TPHIM,TCE,TCI,TVI,R) DEC(16);
R=0.;
[ ) IF(TPHIZ-TPHIM>0.) THEN R=SQRT((TPHIZ-TPHIM)/TCI);
TVI=SQRT(2.*TCI/TCE)*( TUZERO*SQRT(3.14)/2.%(1.-ERF(R-TUZERO))
+ EXP(-(R-TUZERO)**2)/2. )/( SQRT(3.14)/2.*(1-ERF(-TUZER0)));
RETURN(TVI); )
END REVI;
¢ END SHEATH;
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